
GAWK: Effective AWK Programming
A User’s Guide for GNU Awk

Edition 4
December, 2012

Arnold D. Robbins

“To boldly go where no man has gone before” is a Registered Trademark of Paramount
Pictures Corporation.

Published by:

Free Software Foundation
51 Franklin Street, Fifth Floor
Boston, MA 02110-1301 USA
Phone: +1-617-542-5942
Fax: +1-617-542-2652
Email: gnu@gnu.org
URL: http://www.gnu.org/

ISBN 1-882114-28-0

Copyright c© 1989, 1991, 1992, 1993, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,
2005, 2007, 2009, 2010, 2011, 2012 Free Software Foundation, Inc.

This is Edition 4 of GAWK: Effective AWK Programming: A User’s Guide for GNU Awk,
for the 4.0.2 (or later) version of the GNU implementation of AWK.

Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.3 or any later version published by the
Free Software Foundation; with the Invariant Sections being “GNU General Public License”,
the Front-Cover texts being (a) (see below), and with the Back-Cover Texts being (b) (see
below). A copy of the license is included in the section entitled “GNU Free Documentation
License”.

a. “A GNU Manual”

b. “You have the freedom to copy and modify this GNU manual. Buying copies from the
FSF supports it in developing GNU and promoting software freedom.”

mailto:gnu@gnu.org
http://www.gnu.org/

To Miriam, for making me complete.

To Chana, for the joy you bring us.

To Rivka, for the exponential increase.

To Nachum, for the added dimension.

To Malka, for the new beginning.

i

Short Contents

Foreword . 1

Preface . 3

1 Getting Started with awk . 11

2 Running awk and gawk . 25

3 Regular Expressions . 37

4 Reading Input Files . 49

5 Printing Output . 75

6 Expressions . 91

7 Patterns, Actions, and Variables . 113

8 Arrays in awk . 137

9 Functions . 151

10 Internationalization with gawk . 189

11 Advanced Features of gawk . 199

12 A Library of awk Functions . 213

13 Practical awk Programs . 243

14 dgawk: The awk Debugger . 287

A The Evolution of the awk Language . 303

B Installing gawk . 313

C Implementation Notes . 329
D Basic Programming Concepts . 345

Glossary . 351

GNU General Public License . 361

GNU Free Documentation License . 373

Index . 381

iii

Table of Contents

Foreword . 1

Preface . 3
History of awk and gawk . 4
A Rose by Any Other Name . 4
Using This Book . 5
Typographical Conventions . 7
The GNU Project and This Book . 7
How to Contribute . 9
Acknowledgments . 9

1 Getting Started with awk . 11
1.1 How to Run awk Programs . 11

1.1.1 One-Shot Throwaway awk Programs . 11
1.1.2 Running awk Without Input Files . 12
1.1.3 Running Long Programs . 12
1.1.4 Executable awk Programs . 13
1.1.5 Comments in awk Programs . 14
1.1.6 Shell-Quoting Issues . 15

1.1.6.1 Quoting in MS-Windows Batch Files 16
1.2 Data Files for the Examples . 16
1.3 Some Simple Examples . 17
1.4 An Example with Two Rules . 19
1.5 A More Complex Example . 20
1.6 awk Statements Versus Lines . 21
1.7 Other Features of awk . 22
1.8 When to Use awk . 22

2 Running awk and gawk . 25
2.1 Invoking awk . 25
2.2 Command-Line Options . 25
2.3 Other Command-Line Arguments . 30
2.4 Naming Standard Input . 31
2.5 The Environment Variables gawk Uses . 32

2.5.1 The AWKPATH Environment Variable . 32
2.5.2 Other Environment Variables . 32

2.6 gawk’s Exit Status . 33
2.7 Including Other Files Into Your Program . 34
2.8 Obsolete Options and/or Features . 35
2.9 Undocumented Options and Features . 35

iv GAWK: Effective AWK Programming

3 Regular Expressions . 37
3.1 How to Use Regular Expressions . 37
3.2 Escape Sequences . 38
3.3 Regular Expression Operators . 40
3.4 Using Bracket Expressions . 42
3.5 gawk-Specific Regexp Operators . 44
3.6 Case Sensitivity in Matching . 45
3.7 How Much Text Matches? . 46
3.8 Using Dynamic Regexps . 47

4 Reading Input Files . 49
4.1 How Input Is Split into Records . 49
4.2 Examining Fields . 52
4.3 Nonconstant Field Numbers . 53
4.4 Changing the Contents of a Field . 54
4.5 Specifying How Fields Are Separated . 56

4.5.1 Whitespace Normally Separates Fields . 57
4.5.2 Using Regular Expressions to Separate Fields 57
4.5.3 Making Each Character a Separate Field 58
4.5.4 Setting FS from the Command Line . 59
4.5.5 Field-Splitting Summary . 60

4.6 Reading Fixed-Width Data . 61
4.7 Defining Fields By Content . 63
4.8 Multiple-Line Records . 64
4.9 Explicit Input with getline . 67

4.9.1 Using getline with No Arguments . 67
4.9.2 Using getline into a Variable . 68
4.9.3 Using getline from a File . 69
4.9.4 Using getline into a Variable from a File 69
4.9.5 Using getline from a Pipe . 70
4.9.6 Using getline into a Variable from a Pipe 71
4.9.7 Using getline from a Coprocess . 71
4.9.8 Using getline into a Variable from a Coprocess 71
4.9.9 Points to Remember About getline . 71
4.9.10 Summary of getline Variants . 72

4.10 Directories On The Command Line . 73

5 Printing Output . 75
5.1 The print Statement . 75
5.2 print Statement Examples . 75
5.3 Output Separators . 77
5.4 Controlling Numeric Output with print . 77
5.5 Using printf Statements for Fancier Printing 78

5.5.1 Introduction to the printf Statement . 78
5.5.2 Format-Control Letters . 78
5.5.3 Modifiers for printf Formats . 80
5.5.4 Examples Using printf . 82

v

5.6 Redirecting Output of print and printf . 83
5.7 Special File Names in gawk . 86

5.7.1 Special Files for Standard Descriptors . 86
5.7.2 Special Files for Network Communications 87
5.7.3 Special File Name Caveats . 87

5.8 Closing Input and Output Redirections . 88

6 Expressions . 91
6.1 Constants, Variables and Conversions . 91

6.1.1 Constant Expressions . 91
6.1.1.1 Numeric and String Constants . 91
6.1.1.2 Octal and Hexadecimal Numbers . 91
6.1.1.3 Regular Expression Constants . 92

6.1.2 Using Regular Expression Constants . 93
6.1.3 Variables . 94

6.1.3.1 Using Variables in a Program . 94
6.1.3.2 Assigning Variables on the Command Line 94

6.1.4 Conversion of Strings and Numbers . 95
6.2 Operators: Doing Something With Values . 97

6.2.1 Arithmetic Operators . 97
6.2.2 String Concatenation . 98
6.2.3 Assignment Expressions . 100
6.2.4 Increment and Decrement Operators . 102

6.3 Truth Values and Conditions . 103
6.3.1 True and False in awk . 103
6.3.2 Variable Typing and Comparison Expressions 104

6.3.2.1 String Type Versus Numeric Type 104
6.3.2.2 Comparison Operators . 105
6.3.2.3 String Comparison With POSIX Rules 107

6.3.3 Boolean Expressions . 107
6.3.4 Conditional Expressions . 109

6.4 Function Calls . 109
6.5 Operator Precedence (How Operators Nest) 111
6.6 Where You Are Makes A Difference . 112

7 Patterns, Actions, and Variables 113
7.1 Pattern Elements . 113

7.1.1 Regular Expressions as Patterns . 113
7.1.2 Expressions as Patterns . 113
7.1.3 Specifying Record Ranges with Patterns 115
7.1.4 The BEGIN and END Special Patterns . 116

7.1.4.1 Startup and Cleanup Actions . 116
7.1.4.2 Input/Output from BEGIN and END Rules 117

7.1.5 The BEGINFILE and ENDFILE Special Patterns 117
7.1.6 The Empty Pattern . 118

7.2 Using Shell Variables in Programs . 118
7.3 Actions . 119
7.4 Control Statements in Actions . 120

vi GAWK: Effective AWK Programming

7.4.1 The if-else Statement . 120
7.4.2 The while Statement . 121
7.4.3 The do-while Statement . 122
7.4.4 The for Statement . 122
7.4.5 The switch Statement . 123
7.4.6 The break Statement . 124
7.4.7 The continue Statement . 125
7.4.8 The next Statement . 126
7.4.9 The nextfile Statement . 127
7.4.10 The exit Statement . 128

7.5 Built-in Variables . 128
7.5.1 Built-in Variables That Control awk . 129
7.5.2 Built-in Variables That Convey Information 131
7.5.3 Using ARGC and ARGV . 135

8 Arrays in awk . 137
8.1 The Basics of Arrays . 137

8.1.1 Introduction to Arrays . 137
8.1.2 Referring to an Array Element . 138
8.1.3 Assigning Array Elements . 139
8.1.4 Basic Array Example . 139
8.1.5 Scanning All Elements of an Array . 140
8.1.6 Using Predefined Array Scanning Orders 141

8.2 The delete Statement . 144
8.3 Using Numbers to Subscript Arrays . 145
8.4 Using Uninitialized Variables as Subscripts 145
8.5 Multidimensional Arrays . 146

8.5.1 Scanning Multidimensional Arrays . 147
8.6 Arrays of Arrays . 148

9 Functions . 151
9.1 Built-in Functions . 151

9.1.1 Calling Built-in Functions . 151
9.1.2 Numeric Functions . 151
9.1.3 String-Manipulation Functions . 153

9.1.3.1 More About ‘\’ and ‘&’ with sub(), gsub(), and
gensub() . 162

9.1.4 Input/Output Functions . 165
9.1.5 Time Functions . 168
9.1.6 Bit-Manipulation Functions . 172
9.1.7 Getting Type Information . 175
9.1.8 String-Translation Functions . 175

9.2 User-Defined Functions . 175
9.2.1 Function Definition Syntax . 175
9.2.2 Function Definition Examples . 177
9.2.3 Calling User-Defined Functions . 178

9.2.3.1 Writing A Function Call . 178
9.2.3.2 Controlling Variable Scope . 179

vii

9.2.3.3 Passing Function Arguments By Value Or By Reference
. 180

9.2.4 The return Statement . 182
9.2.5 Functions and Their Effects on Variable Typing 183

9.3 Indirect Function Calls . 183

10 Internationalization with gawk 189
10.1 Internationalization and Localization . 189
10.2 GNU gettext . 189
10.3 Internationalizing awk Programs . 191
10.4 Translating awk Programs . 193

10.4.1 Extracting Marked Strings . 193
10.4.2 Rearranging printf Arguments . 193
10.4.3 awk Portability Issues . 194

10.5 A Simple Internationalization Example . 195
10.6 gawk Can Speak Your Language . 197

11 Advanced Features of gawk 199
11.1 Allowing Nondecimal Input Data . 199
11.2 Controlling Array Traversal and Array Sorting 200

11.2.1 Controlling Array Traversal . 200
11.2.2 Sorting Array Values and Indices with gawk 204

11.3 Two-Way Communications with Another Process 205
11.4 Using gawk for Network Programming . 207
11.5 Profiling Your awk Programs . 209

12 A Library of awk Functions 213
12.1 Naming Library Function Global Variables 213
12.2 General Programming . 214

12.2.1 Converting Strings To Numbers . 215
12.2.2 Assertions . 216
12.2.3 Rounding Numbers . 217
12.2.4 The Cliff Random Number Generator 218
12.2.5 Translating Between Characters and Numbers 219
12.2.6 Merging an Array into a String . 220
12.2.7 Managing the Time of Day . 221

12.3 Data File Management . 223
12.3.1 Noting Data File Boundaries . 223
12.3.2 Rereading the Current File . 224
12.3.3 Checking for Readable Data Files . 225
12.3.4 Checking For Zero-length Files . 226
12.3.5 Treating Assignments as File Names . 227

12.4 Processing Command-Line Options . 227
12.5 Reading the User Database . 232
12.6 Reading the Group Database . 236
12.7 Traversing Arrays of Arrays . 240

viii GAWK: Effective AWK Programming

13 Practical awk Programs . 243
13.1 Running the Example Programs . 243
13.2 Reinventing Wheels for Fun and Profit . 243

13.2.1 Cutting out Fields and Columns . 243
13.2.2 Searching for Regular Expressions in Files 248
13.2.3 Printing out User Information . 252
13.2.4 Splitting a Large File into Pieces . 254
13.2.5 Duplicating Output into Multiple Files 256
13.2.6 Printing Nonduplicated Lines of Text 257
13.2.7 Counting Things . 261

13.3 A Grab Bag of awk Programs . 263
13.3.1 Finding Duplicated Words in a Document 263
13.3.2 An Alarm Clock Program . 264
13.3.3 Transliterating Characters . 267
13.3.4 Printing Mailing Labels . 269
13.3.5 Generating Word-Usage Counts . 271
13.3.6 Removing Duplicates from Unsorted Text 272
13.3.7 Extracting Programs from Texinfo Source Files 273
13.3.8 A Simple Stream Editor . 276
13.3.9 An Easy Way to Use Library Functions 278
13.3.10 Finding Anagrams From A Dictionary 284
13.3.11 And Now For Something Completely Different 286

14 dgawk: The awk Debugger 287
14.1 Introduction to dgawk . 287

14.1.1 Debugging In General . 287
14.1.2 Additional Debugging Concepts . 287
14.1.3 Awk Debugging . 288

14.2 Sample dgawk session . 288
14.2.1 dgawk Invocation . 289
14.2.2 Finding The Bug . 289

14.3 Main dgawk Commands . 292
14.3.1 Control Of Breakpoints . 292
14.3.2 Control of Execution . 294
14.3.3 Viewing and Changing Data . 295
14.3.4 Dealing With The Stack . 296
14.3.5 Obtaining Information About The Program and The

Debugger State . 297
14.3.6 Miscellaneous Commands . 298

14.4 Readline Support . 300
14.5 Limitations and Future Plans . 301

ix

Appendix A The Evolution of the awk Language
. 303

A.1 Major Changes Between V7 and SVR3.1 . 303
A.2 Changes Between SVR3.1 and SVR4 . 304
A.3 Changes Between SVR4 and POSIX awk . 304
A.4 Extensions in Brian Kernighan’s awk . 305
A.5 Extensions in gawk Not in POSIX awk . 305
A.6 Common Extensions Summary . 307
A.7 Regexp Ranges and Locales: A Long Sad Story 308
A.8 Major Contributors to gawk . 309

Appendix B Installing gawk 313
B.1 The gawk Distribution . 313

B.1.1 Getting the gawk Distribution . 313
B.1.2 Extracting the Distribution . 313
B.1.3 Contents of the gawk Distribution . 314

B.2 Compiling and Installing gawk on Unix-like Systems 316
B.2.1 Compiling gawk for Unix-like Systems 316
B.2.2 Additional Configuration Options . 317
B.2.3 The Configuration Process . 318

B.3 Installation on Other Operating Systems . 318
B.3.1 Installation on PC Operating Systems 318

B.3.1.1 Installing a Prepared Distribution for PC Systems . . 318
B.3.1.2 Compiling gawk for PC Operating Systems 319
B.3.1.3 Testing gawk on PC Operating Systems 320
B.3.1.4 Using gawk on PC Operating Systems 321
B.3.1.5 Using gawk In The Cygwin Environment 322
B.3.1.6 Using gawk In The MSYS Environment 322

B.3.2 How to Compile and Install gawk on VMS 322
B.3.2.1 Compiling gawk on VMS . 322
B.3.2.2 Installing gawk on VMS . 323
B.3.2.3 Running gawk on VMS . 323
B.3.2.4 Some VMS Systems Have An Old Version of gawk . . 324

B.4 Reporting Problems and Bugs . 324
B.5 Other Freely Available awk Implementations 325

Appendix C Implementation Notes 329
C.1 Downward Compatibility and Debugging . 329
C.2 Making Additions to gawk . 329

C.2.1 Accessing The gawk Git Repository . 329
C.2.2 Adding New Features . 330
C.2.3 Porting gawk to a New Operating System 331

C.3 Adding New Built-in Functions to gawk . 332
C.3.1 A Minimal Introduction to gawk Internals 333
C.3.2 Extension Licensing . 336
C.3.3 Example: Directory and File Operation Built-ins 336

C.3.3.1 Using chdir() and stat() . 336

x GAWK: Effective AWK Programming

C.3.3.2 C Code for chdir() and stat() 338
C.3.3.3 Integrating the Extensions . 341

C.4 Probable Future Extensions . 342

Appendix D Basic Programming Concepts . . 345
D.1 What a Program Does . 345
D.2 Data Values in a Computer . 346
D.3 Floating-Point Number Caveats . 347

D.3.1 The String Value Can Lie . 348
D.3.2 Floating Point Numbers Are Not Abstract Numbers 348
D.3.3 Standards Versus Existing Practice . 349

Glossary . 351

GNU General Public License 361

GNU Free Documentation License 373
ADDENDUM: How to use this License for your documents 379

Index . 381

Foreword 1

Foreword

Arnold Robbins and I are good friends. We were introduced in 1990 by circumstances—and
our favorite programming language, AWK. The circumstances started a couple of years
earlier. I was working at a new job and noticed an unplugged Unix computer sitting in the
corner. No one knew how to use it, and neither did I. However, a couple of days later it
was running, and I was root and the one-and-only user. That day, I began the transition
from statistician to Unix programmer.

On one of many trips to the library or bookstore in search of books on Unix, I found
the gray AWK book, a.k.a. Aho, Kernighan and Weinberger, The AWK Programming
Language, Addison-Wesley, 1988. AWK’s simple programming paradigm—find a pattern in
the input and then perform an action—often reduced complex or tedious data manipulations
to few lines of code. I was excited to try my hand at programming in AWK.

Alas, the awk on my computer was a limited version of the language described in the
AWK book. I discovered that my computer had “old awk” and the AWK book described
“new awk.” I learned that this was typical; the old version refused to step aside or relinquish
its name. If a system had a new awk, it was invariably called nawk, and few systems had it.
The best way to get a new awk was to ftp the source code for gawk from prep.ai.mit.edu.
gawk was a version of new awk written by David Trueman and Arnold, and available under
the GNU General Public License.

(Incidentally, it’s no longer difficult to find a new awk. gawk ships with GNU/Linux, and
you can download binaries or source code for almost any system; my wife uses gawk on her
VMS box.)

My Unix system started out unplugged from the wall; it certainly was not plugged into
a network. So, oblivious to the existence of gawk and the Unix community in general, and
desiring a new awk, I wrote my own, called mawk. Before I was finished I knew about gawk,
but it was too late to stop, so I eventually posted to a comp.sources newsgroup.

A few days after my posting, I got a friendly email from Arnold introducing himself.
He suggested we share design and algorithms and attached a draft of the POSIX standard
so that I could update mawk to support language extensions added after publication of the
AWK book.

Frankly, if our roles had been reversed, I would not have been so open and we probably
would have never met. I’m glad we did meet. He is an AWK expert’s AWK expert and a
genuinely nice person. Arnold contributes significant amounts of his expertise and time to
the Free Software Foundation.

This book is the gawk reference manual, but at its core it is a book about AWK program-
ming that will appeal to a wide audience. It is a definitive reference to the AWK language
as defined by the 1987 Bell Laboratories release and codified in the 1992 POSIX Utilities
standard.

On the other hand, the novice AWK programmer can study a wealth of practical pro-
grams that emphasize the power of AWK’s basic idioms: data driven control-flow, pattern
matching with regular expressions, and associative arrays. Those looking for something
new can try out gawk’s interface to network protocols via special /inet files.

The programs in this book make clear that an AWK program is typically much smaller
and faster to develop than a counterpart written in C. Consequently, there is often a payoff

2 GAWK: Effective AWK Programming

to prototype an algorithm or design in AWK to get it running quickly and expose problems
early. Often, the interpreted performance is adequate and the AWK prototype becomes the
product.

The new pgawk (profiling gawk), produces program execution counts. I recently exper-
imented with an algorithm that for n lines of input, exhibited ∼Cn2 performance, while
theory predicted ∼ Cn log n behavior. A few minutes poring over the awkprof.out pro-
file pinpointed the problem to a single line of code. pgawk is a welcome addition to my
programmer’s toolbox.

Arnold has distilled over a decade of experience writing and using AWK programs, and
developing gawk, into this book. If you use AWK or want to learn how, then read this book.

Michael Brennan
Author of mawk
March, 2001

Preface 3

Preface

Several kinds of tasks occur repeatedly when working with text files. You might want to
extract certain lines and discard the rest. Or you may need to make changes wherever
certain patterns appear, but leave the rest of the file alone. Writing single-use programs for
these tasks in languages such as C, C++, or Java is time-consuming and inconvenient. Such
jobs are often easier with awk. The awk utility interprets a special-purpose programming
language that makes it easy to handle simple data-reformatting jobs.

The GNU implementation of awk is called gawk; if you invoke it with the proper options
or environment variables (see Section 2.2 [Command-Line Options], page 25), it is fully
compatible with the POSIX1 specification of the awk language and with the Unix version
of awk maintained by Brian Kernighan. This means that all properly written awk programs
should work with gawk. Thus, we usually don’t distinguish between gawk and other awk

implementations.

Using awk allows you to:

• Manage small, personal databases

• Generate reports

• Validate data

• Produce indexes and perform other document preparation tasks

• Experiment with algorithms that you can adapt later to other computer languages

In addition, gawk provides facilities that make it easy to:

• Extract bits and pieces of data for processing

• Sort data

• Perform simple network communications

This book teaches you about the awk language and how you can use it effectively. You
should already be familiar with basic system commands, such as cat and ls,2 as well as
basic shell facilities, such as input/output (I/O) redirection and pipes.

Implementations of the awk language are available for many different computing en-
vironments. This book, while describing the awk language in general, also describes the
particular implementation of awk called gawk (which stands for “GNU awk”). gawk runs
on a broad range of Unix systems, ranging from Intel R©-architecture PC-based computers
up through large-scale systems, such as Crays. gawk has also been ported to Mac OS X,
Microsoft Windows (all versions) and OS/2 PCs, and VMS. (Some other, obsolete systems
to which gawk was once ported are no longer supported and the code for those systems has
been removed.)

1 The 2008 POSIX standard can be found online at http://www.opengroup.org/onlinepubs/9699919799/
.

2 These commands are available on POSIX-compliant systems, as well as on traditional Unix-based sys-
tems. If you are using some other operating system, you still need to be familiar with the ideas of I/O
redirection and pipes.

http://www.opengroup.org/onlinepubs/9699919799/
http://www.opengroup.org/onlinepubs/9699919799/

4 GAWK: Effective AWK Programming

History of awk and gawk

Recipe For A Programming Language

1 part egrep 1 part snobol
2 parts ed 3 parts C

Blend all parts well using lex and yacc. Document minimally and release.

After eight years, add another part egrep and two more parts C. Document
very well and release.

The name awk comes from the initials of its designers: Alfred V. Aho, Peter J. Wein-
berger and Brian W. Kernighan. The original version of awk was written in 1977 at AT&T
Bell Laboratories. In 1985, a new version made the programming language more powerful,
introducing user-defined functions, multiple input streams, and computed regular expres-
sions. This new version became widely available with Unix System V Release 3.1 (1987).
The version in System V Release 4 (1989) added some new features and cleaned up the
behavior in some of the “dark corners” of the language. The specification for awk in the
POSIX Command Language and Utilities standard further clarified the language. Both the
gawk designers and the original Bell Laboratories awk designers provided feedback for the
POSIX specification.

Paul Rubin wrote the GNU implementation, gawk, in 1986. Jay Fenlason completed
it, with advice from Richard Stallman. John Woods contributed parts of the code as
well. In 1988 and 1989, David Trueman, with help from me, thoroughly reworked gawk for
compatibility with the newer awk. Circa 1994, I became the primary maintainer. Current
development focuses on bug fixes, performance improvements, standards compliance, and
occasionally, new features.

In May of 1997, Jürgen Kahrs felt the need for network access from awk, and with a
little help from me, set about adding features to do this for gawk. At that time, he also
wrote the bulk of TCP/IP Internetworking with gawk (a separate document, available as
part of the gawk distribution). His code finally became part of the main gawk distribution
with gawk version 3.1.

John Haque rewrote the gawk internals, in the process providing an awk-level debugger.
This version became available as gawk version 4.0, in 2011.

See Section A.8 [Major Contributors to gawk], page 309, for a complete list of those who
made important contributions to gawk.

A Rose by Any Other Name

The awk language has evolved over the years. Full details are provided in Appendix A [The
Evolution of the awk Language], page 303. The language described in this book is often
referred to as “new awk” (nawk).

Because of this, there are systems with multiple versions of awk. Some systems have an
awk utility that implements the original version of the awk language and a nawk utility for
the new version. Others have an oawk version for the “old awk” language and plain awk for
the new one. Still others only have one version, which is usually the new one.3

3 Often, these systems use gawk for their awk implementation!

Preface 5

All in all, this makes it difficult for you to know which version of awk you should run
when writing your programs. The best advice we can give here is to check your local
documentation. Look for awk, oawk, and nawk, as well as for gawk. It is likely that you
already have some version of new awk on your system, which is what you should use when
running your programs. (Of course, if you’re reading this book, chances are good that you
have gawk!)

Throughout this book, whenever we refer to a language feature that should be available
in any complete implementation of POSIX awk, we simply use the term awk. When referring
to a feature that is specific to the GNU implementation, we use the term gawk.

Using This Book

The term awk refers to a particular program as well as to the language you use to tell this
program what to do. When we need to be careful, we call the language “the awk language,”
and the program “the awk utility.” This book explains both how to write programs in the
awk language and how to run the awk utility. The term awk program refers to a program
written by you in the awk programming language.

Primarily, this book explains the features of awk as defined in the POSIX standard. It
does so in the context of the gawk implementation. While doing so, it also attempts to
describe important differences between gawk and other awk implementations.4 Finally, any
gawk features that are not in the POSIX standard for awk are noted.

This book has the difficult task of being both a tutorial and a reference. If you are a
novice, feel free to skip over details that seem too complex. You should also ignore the many
cross-references; they are for the expert user and for the online Info and HTML versions of
the document.

There are subsections labeled as Advanced Notes scattered throughout the book. They
add a more complete explanation of points that are relevant, but not likely to be of interest
on first reading. All appear in the index, under the heading “advanced features.”

Most of the time, the examples use complete awk programs. Some of the more advanced
sections show only the part of the awk program that illustrates the concept currently being
described.

While this book is aimed principally at people who have not been exposed to awk, there
is a lot of information here that even the awk expert should find useful. In particular,
the description of POSIX awk and the example programs in Chapter 12 [A Library of awk
Functions], page 213, and in Chapter 13 [Practical awk Programs], page 243, should be of
interest.

Chapter 1 [Getting Started with awk], page 11, provides the essentials you need to know
to begin using awk.

Chapter 2 [Running awk and gawk], page 25, describes how to run gawk, the meaning of
its command-line options, and how it finds awk program source files.

Chapter 3 [Regular Expressions], page 37, introduces regular expressions in general, and
in particular the flavors supported by POSIX awk and gawk.

4 All such differences appear in the index under the entry “differences in awk and gawk.”

6 GAWK: Effective AWK Programming

Chapter 4 [Reading Input Files], page 49, describes how awk reads your data. It intro-
duces the concepts of records and fields, as well as the getline command. I/O redirection
is first described here. Network I/O is also briefly introduced here.

Chapter 5 [Printing Output], page 75, describes how awk programs can produce output
with print and printf.

Chapter 6 [Expressions], page 91, describes expressions, which are the basic building
blocks for getting most things done in a program.

Chapter 7 [Patterns, Actions, and Variables], page 113, describes how to write patterns
for matching records, actions for doing something when a record is matched, and the built-in
variables awk and gawk use.

Chapter 8 [Arrays in awk], page 137, covers awk’s one-and-only data structure: associa-
tive arrays. Deleting array elements and whole arrays is also described, as well as sorting
arrays in gawk. It also describes how gawk provides arrays of arrays.

Chapter 9 [Functions], page 151, describes the built-in functions awk and gawk provide,
as well as how to define your own functions.

Chapter 10 [Internationalization with gawk], page 189, describes special features in gawk

for translating program messages into different languages at runtime.

Chapter 11 [Advanced Features of gawk], page 199, describes a number of gawk-specific
advanced features. Of particular note are the abilities to have two-way communications
with another process, perform TCP/IP networking, and profile your awk programs.

Chapter 12 [A Library of awk Functions], page 213, and Chapter 13 [Practical awk
Programs], page 243, provide many sample awk programs. Reading them allows you to see
awk solving real problems.

Chapter 14 [dgawk: The awk Debugger], page 287, describes the awk debugger, dgawk.

Appendix A [The Evolution of the awk Language], page 303, describes how the awk

language has evolved since its first release to present. It also describes how gawk has
acquired features over time.

Appendix B [Installing gawk], page 313, describes how to get gawk, how to compile it on
POSIX-compatible systems, and how to compile and use it on different non-POSIX systems.
It also describes how to report bugs in gawk and where to get other freely available awk

implementations.

Appendix C [Implementation Notes], page 329, describes how to disable gawk’s exten-
sions, as well as how to contribute new code to gawk, how to write extension libraries, and
some possible future directions for gawk development.

Appendix D [Basic Programming Concepts], page 345, provides some very cursory back-
ground material for those who are completely unfamiliar with computer programming. Also
centralized there is a discussion of some of the issues surrounding floating-point numbers.

The [Glossary], page 351, defines most, if not all, the significant terms used throughout
the book. If you find terms that you aren’t familiar with, try looking them up here.

[GNU General Public License], page 361, and [GNU Free Documentation License],
page 373, present the licenses that cover the gawk source code and this book, respectively.

Preface 7

Typographical Conventions

This book is written in Texinfo, the GNU documentation formatting language. A single
Texinfo source file is used to produce both the printed and online versions of the documen-
tation. Because of this, the typographical conventions are slightly different than in other
books you may have read.

Examples you would type at the command-line are preceded by the common shell pri-
mary and secondary prompts, ‘$’ and ‘>’. Input that you type is shown like this. Output
from the command is preceded by the glyph “ a ”. This typically represents the command’s
standard output. Error messages, and other output on the command’s standard error, are
preceded by the glyph “ error ”. For example:

$ echo hi on stdout

a hi on stdout

$ echo hello on stderr 1>&2

error hello on stderr

In the text, command names appear in this font, while code segments appear in the
same font and quoted, ‘like this’. Options look like this: -f. Some things are emphasized
like this, and if a point needs to be made strongly, it is done like this. The first occurrence of
a new term is usually its definition and appears in the same font as the previous occurrence of
“definition” in this sentence. Finally, file names are indicated like this: /path/to/ourfile.

Characters that you type at the keyboard look like this. In particular, there are special
characters called “control characters.” These are characters that you type by holding down
both the CONTROL key and another key, at the same time. For example, a Ctrl-d is typed
by first pressing and holding the CONTROL key, next pressing the d key and finally releasing
both keys.

Dark Corners

Dark corners are basically fractal — no matter how much you illuminate, there’s
always a smaller but darker one.
Brian Kernighan

Until the POSIX standard (andGAWK: Effective AWK Programming), many features of
awk were either poorly documented or not documented at all. Descriptions of such features
(often called “dark corners”) are noted in this book with the picture of a flashlight in the
margin, as shown here. They also appear in the index under the heading “dark corner.”

As noted by the opening quote, though, any coverage of dark corners is, by definition,
incomplete.

Extensions to the standard awk language that are supported by more than one awk

implementation are marked “(c.e.),” and listed in the index under “common extensions”
and “extensions, common.”

The GNU Project and This Book

The Free Software Foundation (FSF) is a nonprofit organization dedicated to the production
and distribution of freely distributable software. It was founded by Richard M. Stallman,
the author of the original Emacs editor. GNU Emacs is the most widely used version of
Emacs today.

http://texinfo.org

8 GAWK: Effective AWK Programming

The GNU5 Project is an ongoing effort on the part of the Free Software Foundation
to create a complete, freely distributable, POSIX-compliant computing environment. The
FSF uses the “GNU General Public License” (GPL) to ensure that their software’s source
code is always available to the end user. A copy of the GPL is included in this book for
your reference (see [GNU General Public License], page 361). The GPL applies to the C
language source code for gawk. To find out more about the FSF and the GNU Project
online, see the GNU Project’s home page. This book may also be read from their web site.

A shell, an editor (Emacs), highly portable optimizing C, C++, and Objective-C com-
pilers, a symbolic debugger and dozens of large and small utilities (such as gawk), have all
been completed and are freely available. The GNU operating system kernel (the HURD),
has been released but remains in an early stage of development.

Until the GNU operating system is more fully developed, you should consider using
GNU/Linux, a freely distributable, Unix-like operating system for Intel R©, Power Architec-
ture, Sun SPARC, IBM S/390, and other systems.6 Many GNU/Linux distributions are
available for download from the Internet.

(There are numerous other freely available, Unix-like operating systems based on the
Berkeley Software Distribution, and some of them use recent versions of gawk for their
versions of awk. NetBSD, FreeBSD, and OpenBSD are three of the most popular ones, but
there are others.)

The book you are reading is actually free—at least, the information in it is free to
anyone. The machine-readable source code for the book comes with gawk; anyone may take
this book to a copying machine and make as many copies as they like. (Take a moment to
check the Free Documentation License in [GNU Free Documentation License], page 373.)

The book itself has gone through a number of previous editions. Paul Rubin wrote the
very first draft of The GAWK Manual; it was around 40 pages in size. Diane Close and
Richard Stallman improved it, yielding a version that was around 90 pages long and barely
described the original, “old” version of awk.

I started working with that version in the fall of 1988. As work on it progressed, the FSF
published several preliminary versions (numbered 0.x). In 1996, Edition 1.0 was released
with gawk 3.0.0. The FSF published the first two editions under the title The GNU Awk
User’s Guide.

This edition maintains the basic structure of the previous editions. For Edition 4.0, the
content has been thoroughly reviewed and updated. All references to versions prior to 4.0
have been removed. Of significant note for this edition is Chapter 14 [dgawk: The awk

Debugger], page 287.

GAWK: Effective AWK Programming will undoubtedly continue to evolve. An electronic
version comes with the gawk distribution from the FSF. If you find an error in this book,
please report it! See Section B.4 [Reporting Problems and Bugs], page 324, for information
on submitting problem reports electronically.

5 GNU stands for “GNU’s not Unix.”
6 The terminology “GNU/Linux” is explained in the [Glossary], page 351.

http://www.gnu.org
http://www.gnu.org/software/gawk/manual/
http://www.netbsd.org
http://www.freebsd.org
http://www.openbsd.org

Preface 9

How to Contribute

As the maintainer of GNU awk, I once thought that I would be able to manage a collection of
publicly available awk programs and I even solicited contributions. Making things available
on the Internet helps keep the gawk distribution down to manageable size.

The initial collection of material, such as it is, is still available at ftp: / / ftp .

freefriends.org/arnold/Awkstuff. In the hopes of doing something more broad, I
acquired the awk.info domain.

However, I found that I could not dedicate enough time to managing contributed code:
the archive did not grow and the domain went unused for several years.

Fortunately, late in 2008, a volunteer took on the task of setting up an awk-related web
site—http://awk.info—and did a very nice job.

If you have written an interesting awk program, or have written a gawk extension that you
would like to share with the rest of the world, please see http://awk.info/?contribute

for how to contribute it to the web site.

Acknowledgments

The initial draft of The GAWK Manual had the following acknowledgments:

Many people need to be thanked for their assistance in producing this manual.
Jay Fenlason contributed many ideas and sample programs. Richard Mlynarik
and Robert Chassell gave helpful comments on drafts of this manual. The
paper A Supplemental Document for awk by John W. Pierce of the Chemistry
Department at UC San Diego, pinpointed several issues relevant both to awk

implementation and to this manual, that would otherwise have escaped us.

I would like to acknowledge Richard M. Stallman, for his vision of a better world and
for his courage in founding the FSF and starting the GNU Project.

Earlier editions of this book had the following acknowledgements:

The following people (in alphabetical order) provided helpful comments on var-
ious versions of this book, Rick Adams, Dr. Nelson H.F. Beebe, Karl Berry,
Dr. Michael Brennan, Rich Burridge, Claire Cloutier, Diane Close, Scott De-
ifik, Christopher (“Topher”) Eliot, Jeffrey Friedl, Dr. Darrel Hankerson, Michal
Jaegermann, Dr. Richard J. LeBlanc, Michael Lijewski, Pat Rankin, Miriam
Robbins, Mary Sheehan, and Chuck Toporek.

Robert J. Chassell provided much valuable advice on the use of Texinfo. He
also deserves special thanks for convincing me not to title this book How To
Gawk Politely. Karl Berry helped significantly with the TEX part of Texinfo.

I would like to thank Marshall and Elaine Hartholz of Seattle and Dr. Bert
and Rita Schreiber of Detroit for large amounts of quiet vacation time in their
homes, which allowed me to make significant progress on this book and on gawk

itself.

Phil Hughes of SSC contributed in a very important way by loaning me his
laptop GNU/Linux system, not once, but twice, which allowed me to do a lot
of work while away from home.

ftp://ftp.freefriends.org/arnold/Awkstuff
ftp://ftp.freefriends.org/arnold/Awkstuff
http://awk.info
http://awk.info/?contribute

10 GAWK: Effective AWK Programming

David Trueman deserves special credit; he has done a yeoman job of evolving
gawk so that it performs well and without bugs. Although he is no longer
involved with gawk, working with him on this project was a significant pleasure.

The intrepid members of the GNITS mailing list, and most notably Ulrich
Drepper, provided invaluable help and feedback for the design of the interna-
tionalization features.

Chuck Toporek, Mary Sheehan, and Claire Coutier of O’Reilly & Associates
contributed significant editorial help for this book for the 3.1 release of gawk.

Dr. Nelson Beebe, Andreas Buening, Antonio Colombo, Stephen Davies, Scott Deifik,
John H. DuBois III, Darrel Hankerson, Michal Jaegermann, Jürgen Kahrs, Dave Pitts,
Stepan Kasal, Pat Rankin, Andrew Schorr, Corinna Vinschen, Anders Wallin, and Eli
Zaretskii (in alphabetical order) make up the current gawk “crack portability team.” With-
out their hard work and help, gawk would not be nearly the fine program it is today. It has
been and continues to be a pleasure working with this team of fine people.

John Haque contributed the modifications to convert gawk into a byte-code interpreter,
including the debugger. Stephen Davies contributed to the effort to bring the byte-code
changes into the mainstream code base. Efraim Yawitz contributed the initial text of
Chapter 14 [dgawk: The awk Debugger], page 287.

I would like to thank Brian Kernighan for invaluable assistance during the testing and
debugging of gawk, and for ongoing help and advice in clarifying numerous points about the
language. We could not have done nearly as good a job on either gawk or its documentation
without his help.

I must thank my wonderful wife, Miriam, for her patience through the many versions of
this project, for her proofreading, and for sharing me with the computer. I would like to
thank my parents for their love, and for the grace with which they raised and educated me.
Finally, I also must acknowledge my gratitude to G-d, for the many opportunities He has
sent my way, as well as for the gifts He has given me with which to take advantage of those
opportunities.

Arnold Robbins
Nof Ayalon
ISRAEL
March, 2011

Chapter 1: Getting Started with awk 11

1 Getting Started with awk

The basic function of awk is to search files for lines (or other units of text) that contain
certain patterns. When a line matches one of the patterns, awk performs specified actions
on that line. awk keeps processing input lines in this way until it reaches the end of the
input files.

Programs in awk are different from programs in most other languages, because awk

programs are data-driven; that is, you describe the data you want to work with and then
what to do when you find it. Most other languages are procedural; you have to describe, in
great detail, every step the program is to take. When working with procedural languages,
it is usually much harder to clearly describe the data your program will process. For this
reason, awk programs are often refreshingly easy to read and write.

When you run awk, you specify an awk program that tells awk what to do. The program
consists of a series of rules. (It may also contain function definitions, an advanced feature
that we will ignore for now. See Section 9.2 [User-Defined Functions], page 175.) Each rule
specifies one pattern to search for and one action to perform upon finding the pattern.

Syntactically, a rule consists of a pattern followed by an action. The action is enclosed
in curly braces to separate it from the pattern. Newlines usually separate rules. Therefore,
an awk program looks like this:

pattern { action }

pattern { action }

...

1.1 How to Run awk Programs

There are several ways to run an awk program. If the program is short, it is easiest to
include it in the command that runs awk, like this:

awk ’program’ input-file1 input-file2 ...

When the program is long, it is usually more convenient to put it in a file and run it
with a command like this:

awk -f program-file input-file1 input-file2 ...

This section discusses both mechanisms, along with several variations of each.

1.1.1 One-Shot Throwaway awk Programs

Once you are familiar with awk, you will often type in simple programs the moment you want
to use them. Then you can write the program as the first argument of the awk command,
like this:

awk ’program’ input-file1 input-file2 ...

where program consists of a series of patterns and actions, as described earlier.

This command format instructs the shell, or command interpreter, to start awk and use
the program to process records in the input file(s). There are single quotes around program
so the shell won’t interpret any awk characters as special shell characters. The quotes also
cause the shell to treat all of program as a single argument for awk, and allow program to
be more than one line long.

12 GAWK: Effective AWK Programming

This format is also useful for running short or medium-sized awk programs from shell
scripts, because it avoids the need for a separate file for the awk program. A self-contained
shell script is more reliable because there are no other files to misplace.

Section 1.3 [Some Simple Examples], page 17, later in this chapter, presents several
short, self-contained programs.

1.1.2 Running awk Without Input Files

You can also run awk without any input files. If you type the following command line:

awk ’program’

awk applies the program to the standard input, which usually means whatever you type
on the terminal. This continues until you indicate end-of-file by typing Ctrl-d. (On other
operating systems, the end-of-file character may be different. For example, on OS/2, it is
Ctrl-z.)

As an example, the following program prints a friendly piece of advice (from Douglas
Adams’s The Hitchhiker’s Guide to the Galaxy), to keep you from worrying about the
complexities of computer programming1 (BEGIN is a feature we haven’t discussed yet):

$ awk "BEGIN { print \"Don’t Panic!\" }"

a Don’t Panic!

This program does not read any input. The ‘\’ before each of the inner double quotes
is necessary because of the shell’s quoting rules—in particular because it mixes both single
quotes and double quotes.2

This next simple awk program emulates the cat utility; it copies whatever you type on
the keyboard to its standard output (why this works is explained shortly).

$ awk ’{ print }’

Now is the time for all good men

a Now is the time for all good men

to come to the aid of their country.

a to come to the aid of their country.

Four score and seven years ago, ...

a Four score and seven years ago, ...

What, me worry?

a What, me worry?

Ctrl-d

1.1.3 Running Long Programs

Sometimes your awk programs can be very long. In this case, it is more convenient to put
the program into a separate file. In order to tell awk to use that file for its program, you
type:

awk -f source-file input-file1 input-file2 ...

1 If you use Bash as your shell, you should execute the command ‘set +H’ before running this program
interactively, to disable the C shell-style command history, which treats ‘!’ as a special character. We
recommend putting this command into your personal startup file.

2 Although we generally recommend the use of single quotes around the program text, double quotes are
needed here in order to put the single quote into the message.

Chapter 1: Getting Started with awk 13

The -f instructs the awk utility to get the awk program from the file source-file. Any
file name can be used for source-file. For example, you could put the program:

BEGIN { print "Don’t Panic!" }

into the file advice. Then this command:

awk -f advice

does the same thing as this one:

awk "BEGIN { print \"Don’t Panic!\" }"

This was explained earlier (see Section 1.1.2 [Running awk Without Input Files], page 12).
Note that you don’t usually need single quotes around the file name that you specify with
-f, because most file names don’t contain any of the shell’s special characters. Notice that
in advice, the awk program did not have single quotes around it. The quotes are only
needed for programs that are provided on the awk command line.

If you want to clearly identify your awk program files as such, you can add the extension
.awk to the file name. This doesn’t affect the execution of the awk program but it does
make “housekeeping” easier.

1.1.4 Executable awk Programs

Once you have learned awk, you may want to write self-contained awk scripts, using the ‘#!’
script mechanism. You can do this on many systems.3 For example, you could update the
file advice to look like this:

#! /bin/awk -f

BEGIN { print "Don’t Panic!" }

After making this file executable (with the chmod utility), simply type ‘advice’ at the shell
and the system arranges to run awk4 as if you had typed ‘awk -f advice’:

$ chmod +x advice

$ advice

a Don’t Panic!

(We assume you have the current directory in your shell’s search path variable [typically
$PATH]. If not, you may need to type ‘./advice’ at the shell.)

Self-contained awk scripts are useful when you want to write a program that users can
invoke without their having to know that the program is written in awk.

Advanced Notes: Portability Issues with ‘#!’

Some systems limit the length of the interpreter name to 32 characters. Often, this can be
dealt with by using a symbolic link.

3 The ‘#!’ mechanism works on GNU/Linux systems, BSD-based systems and commercial Unix systems.
4 The line beginning with ‘#!’ lists the full file name of an interpreter to run and an optional initial

command-line argument to pass to that interpreter. The operating system then runs the interpreter
with the given argument and the full argument list of the executed program. The first argument in the
list is the full file name of the awk program. The rest of the argument list contains either options to awk,
or data files, or both. Note that on many systems awk may be found in /usr/bin instead of in /bin.
Caveat Emptor.

14 GAWK: Effective AWK Programming

You should not put more than one argument on the ‘#!’ line after the path to awk. It
does not work. The operating system treats the rest of the line as a single argument and
passes it to awk. Doing this leads to confusing behavior—most likely a usage diagnostic of
some sort from awk.

Finally, the value of ARGV[0] (see Section 7.5 [Built-in Variables], page 128) varies de-
pending upon your operating system. Some systems put ‘awk’ there, some put the full
pathname of awk (such as /bin/awk), and some put the name of your script (‘advice’).
Don’t rely on the value of ARGV[0] to provide your script name.

1.1.5 Comments in awk Programs

A comment is some text that is included in a program for the sake of human readers; it
is not really an executable part of the program. Comments can explain what the program
does and how it works. Nearly all programming languages have provisions for comments,
as programs are typically hard to understand without them.

In the awk language, a comment starts with the sharp sign character (‘#’) and continues
to the end of the line. The ‘#’ does not have to be the first character on the line. The awk
language ignores the rest of a line following a sharp sign. For example, we could have put
the following into advice:

This program prints a nice friendly message. It helps

keep novice users from being afraid of the computer.

BEGIN { print "Don’t Panic!" }

You can put comment lines into keyboard-composed throwaway awk programs, but this
usually isn’t very useful; the purpose of a comment is to help you or another person under-
stand the program when reading it at a later time.

CAUTION: As mentioned in Section 1.1.1 [One-Shot Throwaway awk Pro-
grams], page 11, you can enclose small to medium programs in single quotes,
in order to keep your shell scripts self-contained. When doing so, don’t put
an apostrophe (i.e., a single quote) into a comment (or anywhere else in your
program). The shell interprets the quote as the closing quote for the entire
program. As a result, usually the shell prints a message about mismatched
quotes, and if awk actually runs, it will probably print strange messages about
syntax errors. For example, look at the following:

$ awk ’{ print "hello" } # let’s be cute’

>

The shell sees that the first two quotes match, and that a new quoted object
begins at the end of the command line. It therefore prompts with the secondary
prompt, waiting for more input. With Unix awk, closing the quoted string
produces this result:

$ awk ’{ print "hello" } # let’s be cute’

> ’

error awk: can’t open file be

error source line number 1

Putting a backslash before the single quote in ‘let’s’ wouldn’t help, since
backslashes are not special inside single quotes. The next subsection describes
the shell’s quoting rules.

Chapter 1: Getting Started with awk 15

1.1.6 Shell-Quoting Issues

For short to medium length awk programs, it is most convenient to enter the program on the
awk command line. This is best done by enclosing the entire program in single quotes. This
is true whether you are entering the program interactively at the shell prompt, or writing
it as part of a larger shell script:

awk ’program text’ input-file1 input-file2 ...

Once you are working with the shell, it is helpful to have a basic knowledge of shell
quoting rules. The following rules apply only to POSIX-compliant, Bourne-style shells
(such as Bash, the GNU Bourne-Again Shell). If you use the C shell, you’re on your own.

• Quoted items can be concatenated with nonquoted items as well as with other quoted
items. The shell turns everything into one argument for the command.

• Preceding any single character with a backslash (‘\’) quotes that character. The shell
removes the backslash and passes the quoted character on to the command.

• Single quotes protect everything between the opening and closing quotes. The shell
does no interpretation of the quoted text, passing it on verbatim to the command. It is
impossible to embed a single quote inside single-quoted text. Refer back to Section 1.1.5
[Comments in awk Programs], page 14, for an example of what happens if you try.

• Double quotes protect most things between the opening and closing quotes. The shell
does at least variable and command substitution on the quoted text. Different shells
may do additional kinds of processing on double-quoted text.

Since certain characters within double-quoted text are processed by the shell, they
must be escaped within the text. Of note are the characters ‘$’, ‘‘’, ‘\’, and ‘"’, all
of which must be preceded by a backslash within double-quoted text if they are to be
passed on literally to the program. (The leading backslash is stripped first.) Thus, the
example seen previously in Section 1.1.2 [Running awk Without Input Files], page 12,
is applicable:

$ awk "BEGIN { print \"Don’t Panic!\" }"

a Don’t Panic!

Note that the single quote is not special within double quotes.

• Null strings are removed when they occur as part of a non-null command-line argument,
while explicit non-null objects are kept. For example, to specify that the field separator
FS should be set to the null string, use:

awk -F "" ’program’ files # correct

Don’t use this:

awk -F"" ’program’ files # wrong!

In the second case, awk will attempt to use the text of the program as the value of FS,
and the first file name as the text of the program! This results in syntax errors at best,
and confusing behavior at worst.

Mixing single and double quotes is difficult. You have to resort to shell quoting tricks,
like this:

$ awk ’BEGIN { print "Here is a single quote <’"’"’>" }’

a Here is a single quote <’>

16 GAWK: Effective AWK Programming

This program consists of three concatenated quoted strings. The first and the third are
single-quoted, the second is double-quoted.

This can be “simplified” to:

$ awk ’BEGIN { print "Here is a single quote <’\’’>" }’

a Here is a single quote <’>

Judge for yourself which of these two is the more readable.

Another option is to use double quotes, escaping the embedded, awk-level double quotes:

$ awk "BEGIN { print \"Here is a single quote <’>\" }"

a Here is a single quote <’>

This option is also painful, because double quotes, backslashes, and dollar signs are very
common in more advanced awk programs.

A third option is to use the octal escape sequence equivalents (see Section 3.2 [Escape
Sequences], page 38) for the single- and double-quote characters, like so:

$ awk ’BEGIN { print "Here is a single quote <\47>" }’

a Here is a single quote <’>

$ awk ’BEGIN { print "Here is a double quote <\42>" }’

a Here is a double quote <">

This works nicely, except that you should comment clearly what the escapes mean.

A fourth option is to use command-line variable assignment, like this:

$ awk -v sq="’" ’BEGIN { print "Here is a single quote <" sq ">" }’

a Here is a single quote <’>

If you really need both single and double quotes in your awk program, it is probably best
to move it into a separate file, where the shell won’t be part of the picture, and you can say
what you mean.

1.1.6.1 Quoting in MS-Windows Batch Files

Although this book generally only worries about POSIX systems and the POSIX shell, the
following issue arises often enough for many users that it is worth addressing.

The “shells” on Microsoft Windows systems use the double-quote character for quot-
ing, and make it difficult or impossible to include an escaped double-quote character in a
command-line script. The following example, courtesy of Jeroen Brink, shows how to print
all lines in a file surrounded by double quotes:

gawk "{ print \"\042\" $0 \"\042\" }" file

1.2 Data Files for the Examples

Many of the examples in this book take their input from two sample data files. The first,
BBS-list, represents a list of computer bulletin board systems together with information
about those systems. The second data file, called inventory-shipped, contains information
about monthly shipments. In both files, each line is considered to be one record.

In the data file BBS-list, each record contains the name of a computer bulletin board,
its phone number, the board’s baud rate(s), and a code for the number of hours it is
operational. An ‘A’ in the last column means the board operates 24 hours a day. A ‘B’ in
the last column means the board only operates on evening and weekend hours. A ‘C’ means
the board operates only on weekends:

Chapter 1: Getting Started with awk 17

aardvark 555-5553 1200/300 B

alpo-net 555-3412 2400/1200/300 A

barfly 555-7685 1200/300 A

bites 555-1675 2400/1200/300 A

camelot 555-0542 300 C

core 555-2912 1200/300 C

fooey 555-1234 2400/1200/300 B

foot 555-6699 1200/300 B

macfoo 555-6480 1200/300 A

sdace 555-3430 2400/1200/300 A

sabafoo 555-2127 1200/300 C

The data file inventory-shipped represents information about shipments during the
year. Each record contains the month, the number of green crates shipped, the number of
red boxes shipped, the number of orange bags shipped, and the number of blue packages
shipped, respectively. There are 16 entries, covering the 12 months of last year and the first
four months of the current year.

Jan 13 25 15 115

Feb 15 32 24 226

Mar 15 24 34 228

Apr 31 52 63 420

May 16 34 29 208

Jun 31 42 75 492

Jul 24 34 67 436

Aug 15 34 47 316

Sep 13 55 37 277

Oct 29 54 68 525

Nov 20 87 82 577

Dec 17 35 61 401

Jan 21 36 64 620

Feb 26 58 80 652

Mar 24 75 70 495

Apr 21 70 74 514

1.3 Some Simple Examples

The following command runs a simple awk program that searches the input file BBS-list

for the character string ‘foo’ (a grouping of characters is usually called a string ; the term
string is based on similar usage in English, such as “a string of pearls,” or “a string of cars
in a train”):

awk ’/foo/ { print $0 }’ BBS-list

When lines containing ‘foo’ are found, they are printed because ‘print $0’ means print the
current line. (Just ‘print’ by itself means the same thing, so we could have written that
instead.)

You will notice that slashes (‘/’) surround the string ‘foo’ in the awk program. The
slashes indicate that ‘foo’ is the pattern to search for. This type of pattern is called a regular

18 GAWK: Effective AWK Programming

expression, which is covered in more detail later (see Chapter 3 [Regular Expressions],
page 37). The pattern is allowed to match parts of words. There are single quotes around
the awk program so that the shell won’t interpret any of it as special shell characters.

Here is what this program prints:

$ awk ’/foo/ { print $0 }’ BBS-list

a fooey 555-1234 2400/1200/300 B

a foot 555-6699 1200/300 B

a macfoo 555-6480 1200/300 A

a sabafoo 555-2127 1200/300 C

In an awk rule, either the pattern or the action can be omitted, but not both. If the
pattern is omitted, then the action is performed for every input line. If the action is omitted,
the default action is to print all lines that match the pattern.

Thus, we could leave out the action (the print statement and the curly braces) in the
previous example and the result would be the same: awk prints all lines matching the
pattern ‘foo’. By comparison, omitting the print statement but retaining the curly braces
makes an empty action that does nothing (i.e., no lines are printed).

Many practical awk programs are just a line or two. Following is a collection of useful,
short programs to get you started. Some of these programs contain constructs that haven’t
been covered yet. (The description of the program will give you a good idea of what is going
on, but please read the rest of the book to become an awk expert!) Most of the examples
use a data file named data. This is just a placeholder; if you use these programs yourself,
substitute your own file names for data. For future reference, note that there is often more
than one way to do things in awk. At some point, you may want to look back at these
examples and see if you can come up with different ways to do the same things shown here:

• Print the length of the longest input line:

awk ’{ if (length($0) > max) max = length($0) }

END { print max }’ data

• Print every line that is longer than 80 characters:

awk ’length($0) > 80’ data

The sole rule has a relational expression as its pattern and it has no action—so the
default action, printing the record, is used.

• Print the length of the longest line in data:

expand data | awk ’{ if (x < length()) x = length() }

END { print "maximum line length is " x }’

The input is processed by the expand utility to change TABs into spaces, so the widths
compared are actually the right-margin columns.

• Print every line that has at least one field:

awk ’NF > 0’ data

This is an easy way to delete blank lines from a file (or rather, to create a new file
similar to the old file but from which the blank lines have been removed).

• Print seven random numbers from 0 to 100, inclusive:

awk ’BEGIN { for (i = 1; i <= 7; i++)

print int(101 * rand()) }’

Chapter 1: Getting Started with awk 19

• Print the total number of bytes used by files:

ls -l files | awk ’{ x += $5 }

END { print "total bytes: " x }’

• Print the total number of kilobytes used by files:

ls -l files | awk ’{ x += $5 }

END { print "total K-bytes:", x / 1024 }’

• Print a sorted list of the login names of all users:

awk -F: ’{ print $1 }’ /etc/passwd | sort

• Count the lines in a file:

awk ’END { print NR }’ data

• Print the even-numbered lines in the data file:

awk ’NR % 2 == 0’ data

If you use the expression ‘NR % 2 == 1’ instead, the program would print the odd-
numbered lines.

1.4 An Example with Two Rules

The awk utility reads the input files one line at a time. For each line, awk tries the patterns
of each of the rules. If several patterns match, then several actions are run in the order in
which they appear in the awk program. If no patterns match, then no actions are run.

After processing all the rules that match the line (and perhaps there are none), awk
reads the next line. (However, see Section 7.4.8 [The next Statement], page 126, and also
see Section 7.4.9 [The nextfile Statement], page 127). This continues until the program
reaches the end of the file. For example, the following awk program contains two rules:

/12/ { print $0 }

/21/ { print $0 }

The first rule has the string ‘12’ as the pattern and ‘print $0’ as the action. The second
rule has the string ‘21’ as the pattern and also has ‘print $0’ as the action. Each rule’s
action is enclosed in its own pair of braces.

This program prints every line that contains the string ‘12’ or the string ‘21’. If a line
contains both strings, it is printed twice, once by each rule.

This is what happens if we run this program on our two sample data files, BBS-list and
inventory-shipped:

$ awk ’/12/ { print $0 }

> /21/ { print $0 }’ BBS-list inventory-shipped

a aardvark 555-5553 1200/300 B

a alpo-net 555-3412 2400/1200/300 A

a barfly 555-7685 1200/300 A

a bites 555-1675 2400/1200/300 A

a core 555-2912 1200/300 C

a fooey 555-1234 2400/1200/300 B

a foot 555-6699 1200/300 B

a macfoo 555-6480 1200/300 A

a sdace 555-3430 2400/1200/300 A

20 GAWK: Effective AWK Programming

a sabafoo 555-2127 1200/300 C

a sabafoo 555-2127 1200/300 C

a Jan 21 36 64 620

a Apr 21 70 74 514

Note how the line beginning with ‘sabafoo’ in BBS-list was printed twice, once for each
rule.

1.5 A More Complex Example

Now that we’ve mastered some simple tasks, let’s look at what typical awk programs do.
This example shows how awk can be used to summarize, select, and rearrange the output of
another utility. It uses features that haven’t been covered yet, so don’t worry if you don’t
understand all the details:

LC_ALL=C ls -l | awk ’$6 == "Nov" { sum += $5 }

END { print sum }’

This command prints the total number of bytes in all the files in the current directory
that were last modified in November (of any year). The ‘ls -l’ part of this example is a
system command that gives you a listing of the files in a directory, including each file’s size
and the date the file was last modified. Its output looks like this:

-rw-r--r-- 1 arnold user 1933 Nov 7 13:05 Makefile

-rw-r--r-- 1 arnold user 10809 Nov 7 13:03 awk.h

-rw-r--r-- 1 arnold user 983 Apr 13 12:14 awk.tab.h

-rw-r--r-- 1 arnold user 31869 Jun 15 12:20 awkgram.y

-rw-r--r-- 1 arnold user 22414 Nov 7 13:03 awk1.c

-rw-r--r-- 1 arnold user 37455 Nov 7 13:03 awk2.c

-rw-r--r-- 1 arnold user 27511 Dec 9 13:07 awk3.c

-rw-r--r-- 1 arnold user 7989 Nov 7 13:03 awk4.c

The first field contains read-write permissions, the second field contains the number of links
to the file, and the third field identifies the owner of the file. The fourth field identifies the
group of the file. The fifth field contains the size of the file in bytes. The sixth, seventh, and
eighth fields contain the month, day, and time, respectively, that the file was last modified.
Finally, the ninth field contains the file name.5

The ‘$6 == "Nov"’ in our awk program is an expression that tests whether the sixth field
of the output from ‘ls -l’ matches the string ‘Nov’. Each time a line has the string ‘Nov’
for its sixth field, the action ‘sum += $5’ is performed. This adds the fifth field (the file’s
size) to the variable sum. As a result, when awk has finished reading all the input lines, sum
is the total of the sizes of the files whose lines matched the pattern. (This works because
awk variables are automatically initialized to zero.)

After the last line of output from ls has been processed, the END rule executes and prints
the value of sum. In this example, the value of sum is 80600.

These more advanced awk techniques are covered in later sections (see Section 7.3 [Ac-
tions], page 119). Before you can move on to more advanced awk programming, you have to
know how awk interprets your input and displays your output. By manipulating fields and
using print statements, you can produce some very useful and impressive-looking reports.

5 The ‘LC_ALL=C’ is needed to produce this traditional-style output from ls.

Chapter 1: Getting Started with awk 21

1.6 awk Statements Versus Lines

Most often, each line in an awk program is a separate statement or separate rule, like this:

awk ’/12/ { print $0 }

/21/ { print $0 }’ BBS-list inventory-shipped

However, gawk ignores newlines after any of the following symbols and keywords:

, { ? : || && do else

A newline at any other point is considered the end of the statement.6

If you would like to split a single statement into two lines at a point where a newline
would terminate it, you can continue it by ending the first line with a backslash character
(‘\’). The backslash must be the final character on the line in order to be recognized as
a continuation character. A backslash is allowed anywhere in the statement, even in the
middle of a string or regular expression. For example:

awk ’/This regular expression is too long, so continue it\

on the next line/ { print $1 }’

We have generally not used backslash continuation in our sample programs. gawk places
no limit on the length of a line, so backslash continuation is never strictly necessary; it just
makes programs more readable. For this same reason, as well as for clarity, we have kept
most statements short in the sample programs presented throughout the book. Backslash
continuation is most useful when your awk program is in a separate source file instead of
entered from the command line. You should also note that many awk implementations are
more particular about where you may use backslash continuation. For example, they may
not allow you to split a string constant using backslash continuation. Thus, for maximum
portability of your awk programs, it is best not to split your lines in the middle of a regular
expression or a string.

CAUTION: Backslash continuation does not work as described with the C shell.
It works for awk programs in files and for one-shot programs, provided you are
using a POSIX-compliant shell, such as the Unix Bourne shell or Bash. But
the C shell behaves differently! There, you must use two backslashes in a row,
followed by a newline. Note also that when using the C shell, every newline in
your awk program must be escaped with a backslash. To illustrate:

% awk ’BEGIN { \

? print \\

? "hello, world" \

? }’

a hello, world

Here, the ‘%’ and ‘?’ are the C shell’s primary and secondary prompts, analogous
to the standard shell’s ‘$’ and ‘>’.

Compare the previous example to how it is done with a POSIX-compliant shell:

$ awk ’BEGIN {

> print \

6 The ‘?’ and ‘:’ referred to here is the three-operand conditional expression described in Section 6.3.4
[Conditional Expressions], page 109. Splitting lines after ‘?’ and ‘:’ is a minor gawk extension; if --posix
is specified (see Section 2.2 [Command-Line Options], page 25), then this extension is disabled.

22 GAWK: Effective AWK Programming

> "hello, world"

> }’

a hello, world

awk is a line-oriented language. Each rule’s action has to begin on the same line as
the pattern. To have the pattern and action on separate lines, you must use backslash
continuation; there is no other option.

Another thing to keep in mind is that backslash continuation and comments do not mix.
As soon as awk sees the ‘#’ that starts a comment, it ignores everything on the rest of the
line. For example:

$ gawk ’BEGIN { print "dont panic" # a friendly \

> BEGIN rule

> }’

error gawk: cmd. line:2: BEGIN rule

error gawk: cmd. line:2: ^ parse error

In this case, it looks like the backslash would continue the comment onto the next line.
However, the backslash-newline combination is never even noticed because it is “hidden”
inside the comment. Thus, the BEGIN is noted as a syntax error.

When awk statements within one rule are short, you might want to put more than one of
them on a line. This is accomplished by separating the statements with a semicolon (‘;’).
This also applies to the rules themselves. Thus, the program shown at the start of this
section could also be written this way:

/12/ { print $0 } ; /21/ { print $0 }

NOTE: The requirement that states that rules on the same line must be sepa-
rated with a semicolon was not in the original awk language; it was added for
consistency with the treatment of statements within an action.

1.7 Other Features of awk

The awk language provides a number of predefined, or built-in, variables that your programs
can use to get information from awk. There are other variables your program can set as
well to control how awk processes your data.

In addition, awk provides a number of built-in functions for doing common computa-
tional and string-related operations. gawk provides built-in functions for working with
timestamps, performing bit manipulation, for runtime string translation (internationaliza-
tion), determining the type of a variable, and array sorting.

As we develop our presentation of the awk language, we introduce most of the variables
and many of the functions. They are described systematically in Section 7.5 [Built-in
Variables], page 128, and Section 9.1 [Built-in Functions], page 151.

1.8 When to Use awk

Now that you’ve seen some of what awk can do, you might wonder how awk could be
useful for you. By using utility programs, advanced patterns, field separators, arithmetic
statements, and other selection criteria, you can produce much more complex output. The
awk language is very useful for producing reports from large amounts of raw data, such as

Chapter 1: Getting Started with awk 23

summarizing information from the output of other utility programs like ls. (See Section 1.5
[A More Complex Example], page 20.)

Programs written with awk are usually much smaller than they would be in other lan-
guages. This makes awk programs easy to compose and use. Often, awk programs can
be quickly composed at your keyboard, used once, and thrown away. Because awk pro-
grams are interpreted, you can avoid the (usually lengthy) compilation part of the typical
edit-compile-test-debug cycle of software development.

Complex programs have been written in awk, including a complete retargetable assem-
bler for eight-bit microprocessors (see [Glossary], page 351, for more information), and a
microcode assembler for a special-purpose Prolog computer. While the original awk’s capa-
bilities were strained by tasks of such complexity, modern versions are more capable. Even
Brian Kernighan’s version of awk has fewer predefined limits, and those that it has are much
larger than they used to be.

If you find yourself writing awk scripts of more than, say, a few hundred lines, you might
consider using a different programming language. Emacs Lisp is a good choice if you need
sophisticated string or pattern matching capabilities. The shell is also good at string and
pattern matching; in addition, it allows powerful use of the system utilities. More conven-
tional languages, such as C, C++, and Java, offer better facilities for system programming
and for managing the complexity of large programs. Programs in these languages may
require more lines of source code than the equivalent awk programs, but they are easier to
maintain and usually run more efficiently.

Chapter 2: Running awk and gawk 25

2 Running awk and gawk

This chapter covers how to run awk, both POSIX-standard and gawk-specific command-line
options, and what awk and gawk do with non-option arguments. It then proceeds to cover
how gawk searches for source files, reading standard input along with other files, gawk’s en-
vironment variables, gawk’s exit status, using include files, and obsolete and undocumented
options and/or features.

Many of the options and features described here are discussed in more detail later in the
book; feel free to skip over things in this chapter that don’t interest you right now.

2.1 Invoking awk

There are two ways to run awk—with an explicit program or with one or more program
files. Here are templates for both of them; items enclosed in [. . .] in these templates are
optional:

awk [options] -f progfile [--] file ...

awk [options] [--] ’program’ file ...

Besides traditional one-letter POSIX-style options, gawk also supports GNU long op-
tions.

It is possible to invoke awk with an empty program:

awk ’’ datafile1 datafile2

Doing so makes little sense, though; awk exits silently when given an empty program. If
--lint has been specified on the command line, gawk issues a warning that the program is
empty.

2.2 Command-Line Options

Options begin with a dash and consist of a single character. GNU-style long options consist
of two dashes and a keyword. The keyword can be abbreviated, as long as the abbreviation
allows the option to be uniquely identified. If the option takes an argument, then the
keyword is either immediately followed by an equals sign (‘=’) and the argument’s value, or
the keyword and the argument’s value are separated by whitespace. If a particular option
with a value is given more than once, it is the last value that counts.

Each long option for gawk has a corresponding POSIX-style short option. The long
and short options are interchangeable in all contexts. The following list describes options
mandated by the POSIX standard:

-F fs

--field-separator fs

Set the FS variable to fs (see Section 4.5 [Specifying How Fields Are Separated],
page 56).

-f source-file

--file source-file

Read awk program source from source-file instead of in the first non-option
argument. This option may be given multiple times; the awk program consists
of the concatenation the contents of each specified source-file.

26 GAWK: Effective AWK Programming

-v var=val

--assign var=val

Set the variable var to the value val before execution of the program begins.
Such variable values are available inside the BEGIN rule (see Section 2.3 [Other
Command-Line Arguments], page 30).

The -v option can only set one variable, but it can be used more than once,
setting another variable each time, like this: ‘awk -v foo=1 -v bar=2 ...’.

CAUTION: Using -v to set the values of the built-in variables may
lead to surprising results. awk will reset the values of those variables
as it needs to, possibly ignoring any predefined value you may have
given.

-W gawk-opt

Provide an implementation-specific option. This is the POSIX convention for
providing implementation-specific options. These options also have correspond-
ing GNU-style long options. Note that the long options may be abbreviated, as
long as the abbreviations remain unique. The full list of gawk-specific options
is provided next.

-- Signal the end of the command-line options. The following arguments are not
treated as options even if they begin with ‘-’. This interpretation of -- follows
the POSIX argument parsing conventions.

This is useful if you have file names that start with ‘-’, or in shell scripts, if
you have file names that will be specified by the user that could start with ‘-’.
It is also useful for passing options on to the awk program; see Section 12.4
[Processing Command-Line Options], page 227.

The following list describes gawk-specific options:

-b

--characters-as-bytes

Cause gawk to treat all input data as single-byte characters. In addition, all
output written with print or printf are treated as single-byte characters.

Normally, gawk follows the POSIX standard and attempts to process its input
data according to the current locale. This can often involve converting multi-
byte characters into wide characters (internally), and can lead to problems or
confusion if the input data does not contain valid multibyte characters. This
option is an easy way to tell gawk: “hands off my data!”.

-c

--traditional

Specify compatibility mode, in which the GNU extensions to the awk language
are disabled, so that gawk behaves just like Brian Kernighan’s version awk. See
Section A.5 [Extensions in gawk Not in POSIX awk], page 305, which sum-
marizes the extensions. Also see Section C.1 [Downward Compatibility and
Debugging], page 329.

-C

--copyright

Print the short version of the General Public License and then exit.

Chapter 2: Running awk and gawk 27

-d[file]
--dump-variables[=file]

Print a sorted list of global variables, their types, and final values to file. If
no file is provided, print this list to the file named awkvars.out in the current
directory. No space is allowed between the -d and file, if file is supplied.

Having a list of all global variables is a good way to look for typographical
errors in your programs. You would also use this option if you have a large
program with a lot of functions, and you want to be sure that your functions
don’t inadvertently use global variables that you meant to be local. (This is a
particularly easy mistake to make with simple variable names like i, j, etc.)

-e program-text

--source program-text

Provide program source code in the program-text. This option allows you to mix
source code in files with source code that you enter on the command line. This is
particularly useful when you have library functions that you want to use from
your command-line programs (see Section 2.5.1 [The AWKPATH Environment
Variable], page 32).

-E file

--exec file

Similar to -f, read awk program text from file. There are two differences from
-f:

• This option terminates option processing; anything else on the command
line is passed on directly to the awk program.

• Command-line variable assignments of the form ‘var=value’ are disal-
lowed.

This option is particularly necessary for World Wide Web CGI applications
that pass arguments through the URL; using this option prevents a malicious
(or other) user from passing in options, assignments, or awk source code (via
--source) to the CGI application. This option should be used with ‘#!’ scripts
(see Section 1.1.4 [Executable awk Programs], page 13), like so:

#! /usr/local/bin/gawk -E

awk program here ...

-g

--gen-pot

Analyze the source program and generate a GNU gettext Portable Object
Template file on standard output for all string constants that have been marked
for translation. See Chapter 10 [Internationalization with gawk], page 189, for
information about this option.

-h

--help Print a “usage” message summarizing the short and long style options that
gawk accepts and then exit.

28 GAWK: Effective AWK Programming

-L [value]
--lint[=value]

Warn about constructs that are dubious or nonportable to other awk implemen-
tations. Some warnings are issued when gawk first reads your program. Others
are issued at runtime, as your program executes. With an optional argument
of ‘fatal’, lint warnings become fatal errors. This may be drastic, but its use
will certainly encourage the development of cleaner awk programs. With an
optional argument of ‘invalid’, only warnings about things that are actually
invalid are issued. (This is not fully implemented yet.)

Some warnings are only printed once, even if the dubious constructs they warn
about occur multiple times in your awk program. Thus, when eliminating prob-
lems pointed out by --lint, you should take care to search for all occurrences
of each inappropriate construct. As awk programs are usually short, doing so
is not burdensome.

-n

--non-decimal-data

Enable automatic interpretation of octal and hexadecimal values in input data
(see Section 11.1 [Allowing Nondecimal Input Data], page 199).

CAUTION: This option can severely break old programs. Use with
care.

-N

--use-lc-numeric

Force the use of the locale’s decimal point character when parsing numeric input
data (see Section 6.6 [Where You Are Makes A Difference], page 112).

-O

--optimize

Enable some optimizations on the internal representation of the program. At
the moment this includes just simple constant folding. The gawk maintainer
hopes to add more optimizations over time.

-p[file]
--profile[=file]

Enable profiling of awk programs (see Section 11.5 [Profiling Your awk Pro-
grams], page 209). By default, profiles are created in a file named awkprof.out.
The optional file argument allows you to specify a different file name for the
profile file. No space is allowed between the -p and file, if file is supplied.

When run with gawk, the profile is just a “pretty printed” version of the pro-
gram. When run with pgawk, the profile contains execution counts for each
statement in the program in the left margin, and function call counts for each
function.

-P

--posix Operate in strict POSIX mode. This disables all gawk extensions (just like
--traditional) and disables all extensions not allowed by POSIX. See
Section A.6 [Common Extensions Summary], page 307, for a summary of
the extensions in gawk that are disabled by this option. Also, the following
additional restrictions apply:

Chapter 2: Running awk and gawk 29

• Newlines do not act as whitespace to separate fields when FS is equal to a
single space (see Section 4.2 [Examining Fields], page 52).

• Newlines are not allowed after ‘?’ or ‘:’ (see Section 6.3.4 [Conditional
Expressions], page 109).

• Specifying ‘-Ft’ on the command-line does not set the value of FS to be
a single TAB character (see Section 4.5 [Specifying How Fields Are Sepa-
rated], page 56).

• The locale’s decimal point character is used for parsing input data (see
Section 6.6 [Where You Are Makes A Difference], page 112).

If you supply both --traditional and --posix on the command line, --posix
takes precedence. gawk also issues a warning if both options are supplied.

-r

--re-interval

Allow interval expressions (see Section 3.3 [Regular Expression Operators],
page 40) in regexps. This is now gawk’s default behavior. Nevertheless, this
option remains both for backward compatibility, and for use in combination
with the --traditional option.

-R file

--command=file

dgawk only. Read dgawk debugger options and commands from file. See
Section 14.3.5 [Obtaining Information About The Program and The Debug-
ger State], page 297, for more information.

-S

--sandbox

Disable the system() function, input redirections with getline, output redi-
rections with print and printf, and dynamic extensions. This is particularly
useful when you want to run awk scripts from questionable sources and need to
make sure the scripts can’t access your system (other than the specified input
data file).

-t

--lint-old

Warn about constructs that are not available in the original version of awk from
Version 7 Unix (see Section A.1 [Major Changes Between V7 and SVR3.1],
page 303).

-V

--version

Print version information for this particular copy of gawk. This allows you to
determine if your copy of gawk is up to date with respect to whatever the Free
Software Foundation is currently distributing. It is also useful for bug reports
(see Section B.4 [Reporting Problems and Bugs], page 324).

As long as program text has been supplied, any other options are flagged as invalid with
a warning message but are otherwise ignored.

30 GAWK: Effective AWK Programming

In compatibility mode, as a special case, if the value of fs supplied to the -F option is
‘t’, then FS is set to the TAB character ("\t"). This is true only for --traditional and
not for --posix (see Section 4.5 [Specifying How Fields Are Separated], page 56).

The -f option may be used more than once on the command line. If it is, awk reads
its program source from all of the named files, as if they had been concatenated together
into one big file. This is useful for creating libraries of awk functions. These functions can
be written once and then retrieved from a standard place, instead of having to be included
into each individual program. (As mentioned in Section 9.2.1 [Function Definition Syntax],
page 175, function names must be unique.)

With standard awk, library functions can still be used, even if the program is entered
at the terminal, by specifying ‘-f /dev/tty’. After typing your program, type Ctrl-d (the
end-of-file character) to terminate it. (You may also use ‘-f -’ to read program source from
the standard input but then you will not be able to also use the standard input as a source
of data.)

Because it is clumsy using the standard awkmechanisms to mix source file and command-
line awk programs, gawk provides the --source option. This does not require you to pre-
empt the standard input for your source code; it allows you to easily mix command-line
and library source code (see Section 2.5.1 [The AWKPATH Environment Variable], page 32).
The --source option may also be used multiple times on the command line.

If no -f or --source option is specified, then gawk uses the first non-option command-
line argument as the text of the program source code.

If the environment variable POSIXLY_CORRECT exists, then gawk behaves in strict POSIX
mode, exactly as if you had supplied the --posix command-line option. Many GNU pro-
grams look for this environment variable to suppress extensions that conflict with POSIX,
but gawk behaves differently: it suppresses all extensions, even those that do not conflict
with POSIX, and behaves in strict POSIX mode. If --lint is supplied on the command
line and gawk turns on POSIX mode because of POSIXLY_CORRECT, then it issues a warning
message indicating that POSIX mode is in effect. You would typically set this variable in
your shell’s startup file. For a Bourne-compatible shell (such as Bash), you would add these
lines to the .profile file in your home directory:

POSIXLY_CORRECT=true

export POSIXLY_CORRECT

For a C shell-compatible shell,1 you would add this line to the .login file in your home
directory:

setenv POSIXLY_CORRECT true

Having POSIXLY_CORRECT set is not recommended for daily use, but it is good for testing
the portability of your programs to other environments.

2.3 Other Command-Line Arguments

Any additional arguments on the command line are normally treated as input files to be
processed in the order specified. However, an argument that has the form var=value, as-
signs the value value to the variable var—it does not specify a file at all. (See Section 6.1.3.2
[Assigning Variables on the Command Line], page 94.)

1 Not recommended.

Chapter 2: Running awk and gawk 31

All these arguments are made available to your awk program in the ARGV array (see
Section 7.5 [Built-in Variables], page 128). Command-line options and the program text (if
present) are omitted from ARGV. All other arguments, including variable assignments, are
included. As each element of ARGV is processed, gawk sets the variable ARGIND to the index
in ARGV of the current element.

The distinction between file name arguments and variable-assignment arguments is made
when awk is about to open the next input file. At that point in execution, it checks the file
name to see whether it is really a variable assignment; if so, awk sets the variable instead
of reading a file.

Therefore, the variables actually receive the given values after all previously specified
files have been read. In particular, the values of variables assigned in this fashion are
not available inside a BEGIN rule (see Section 7.1.4 [The BEGIN and END Special Patterns],
page 116), because such rules are run before awk begins scanning the argument list.

The variable values given on the command line are processed for escape sequences (see
Section 3.2 [Escape Sequences], page 38).

In some earlier implementations of awk, when a variable assignment occurred before
any file names, the assignment would happen before the BEGIN rule was executed. awk’s
behavior was thus inconsistent; some command-line assignments were available inside the
BEGIN rule, while others were not. Unfortunately, some applications came to depend upon
this “feature.” When awk was changed to be more consistent, the -v option was added to
accommodate applications that depended upon the old behavior.

The variable assignment feature is most useful for assigning to variables such as RS, OFS,
and ORS, which control input and output formats before scanning the data files. It is also
useful for controlling state if multiple passes are needed over a data file. For example:

awk ’pass == 1 { pass 1 stuff }

pass == 2 { pass 2 stuff }’ pass=1 mydata pass=2 mydata

Given the variable assignment feature, the -F option for setting the value of FS is not
strictly necessary. It remains for historical compatibility.

2.4 Naming Standard Input

Often, you may wish to read standard input together with other files. For example, you
may wish to read one file, read standard input coming from a pipe, and then read another
file.

The way to name the standard input, with all versions of awk, is to use a single, stand-
alone minus sign or dash, ‘-’. For example:

some_command | awk -f myprog.awk file1 - file2

Here, awk first reads file1, then it reads the output of some command, and finally it reads
file2.

You may also use "-" to name standard input when reading files with getline (see
Section 4.9.3 [Using getline from a File], page 69).

In addition, gawk allows you to specify the special file name /dev/stdin, both on the
command line and with getline. Some other versions of awk also support this, but it is not
standard. (Some operating systems provide a /dev/stdin file in the file system, however,
gawk always processes this file name itself.)

32 GAWK: Effective AWK Programming

2.5 The Environment Variables gawk Uses

A number of environment variables influence how gawk behaves.

2.5.1 The AWKPATH Environment Variable

In most awk implementations, you must supply a precise path name for each program file,
unless the file is in the current directory. But in gawk, if the file name supplied to the
-f option does not contain a ‘/’, then gawk searches a list of directories (called the search
path), one by one, looking for a file with the specified name.

The search path is a string consisting of directory names separated by colons. gawk gets
its search path from the AWKPATH environment variable. If that variable does not exist, gawk
uses a default path, ‘.:/usr/local/share/awk’.2

The search path feature is particularly useful for building libraries of useful awk functions.
The library files can be placed in a standard directory in the default path and then specified
on the command line with a short file name. Otherwise, the full file name would have to
be typed for each file.

By using both the --source and -f options, your command-line awk programs can use
facilities in awk library files (see Chapter 12 [A Library of awk Functions], page 213). Path
searching is not done if gawk is in compatibility mode. This is true for both --traditional

and --posix. See Section 2.2 [Command-Line Options], page 25.

NOTE: To include the current directory in the path, either place . explicitly in
the path or write a null entry in the path. (A null entry is indicated by starting
or ending the path with a colon or by placing two colons next to each other
(‘::’).) This path search mechanism is similar to the shell’s.

However, gawk always looks in the current directory before searching AWKPATH,
so there is no real reason to include the current directory in the search path.

If AWKPATH is not defined in the environment, gawk places its default search path into
ENVIRON["AWKPATH"]. This makes it easy to determine the actual search path that gawk
will use from within an awk program.

While you can change ENVIRON["AWKPATH"] within your awk program, this has no effect
on the running program’s behavior. This makes sense: the AWKPATH environment variable
is used to find the program source files. Once your program is running, all the files have
been found, and gawk no longer needs to use AWKPATH.

2.5.2 Other Environment Variables

A number of other environment variables affect gawk’s behavior, but they are more special-
ized. Those in the following list are meant to be used by regular users.

POSIXLY_CORRECT

Causes gawk to switch POSIX compatibility mode, disabling all traditional and
GNU extensions. See Section 2.2 [Command-Line Options], page 25.

2 Your version of gawk may use a different directory; it will depend upon how gawk was built and installed.
The actual directory is the value of ‘$(datadir)’ generated when gawk was configured. You probably
don’t need to worry about this, though.

Chapter 2: Running awk and gawk 33

GAWK_SOCK_RETRIES

Controls the number of time gawk will attempt to retry a two-way TCP/IP
(socket) connection before giving up. See Section 11.4 [Using gawk for Network
Programming], page 207.

GAWK_MSEC_SLEEP

Specifies the interval between connection retries, in milliseconds. On systems
that do not support the usleep() system call, the value is rounded up to an
integral number of seconds.

The environment variables in the following list are meant for use by the gawk developers
for testing and tuning. They are subject to change. The variables are:

AVG_CHAIN_MAX

The average number of items gawk will maintain on a hash chain for managing
arrays.

AWK_HASH If this variable exists with a value of ‘gst’, gawk will switch to using the
hash function from GNU Smalltalk for managing arrays. This function may
be marginally faster than the standard function.

AWKREADFUNC

If this variable exists, gawk switches to reading source files one line at a time,
instead of reading in blocks. This exists for debugging problems on filesystems
on non-POSIX operating systems where I/O is performed in records, not in
blocks.

GAWK_NO_DFA

If this variable exists, gawk does not use the DFA regexp matcher for “does it
match” kinds of tests. This can cause gawk to be slower. Its purpose is to help
isolate differences between the two regexp matchers that gawk uses internally.
(There aren’t supposed to be differences, but occasionally theory and practice
don’t coordinate with each other.)

GAWK_STACKSIZE

This specifies the amount by which gawk should grow its internal evaluation
stack, when needed.

TIDYMEM If this variable exists, gawk uses the mtrace() library calls from GNU LIBC to
help track down possible memory leaks.

2.6 gawk’s Exit Status

If the exit statement is used with a value (see Section 7.4.10 [The exit Statement],
page 128), then gawk exits with the numeric value given to it.

Otherwise, if there were no problems during execution, gawk exits with the value of the
C constant EXIT_SUCCESS. This is usually zero.

If an error occurs, gawk exits with the value of the C constant EXIT_FAILURE. This is
usually one.

If gawk exits because of a fatal error, the exit status is 2. On non-POSIX systems, this
value may be mapped to EXIT_FAILURE.

34 GAWK: Effective AWK Programming

2.7 Including Other Files Into Your Program

This section describes a feature that is specific to gawk.

The ‘@include’ keyword can be used to read external awk source files. This gives you
the ability to split large awk source files into smaller, more manageable pieces, and also
lets you reuse common awk code from various awk scripts. In other words, you can group
together awk functions, used to carry out specific tasks, into external files. These files can
be used just like function libraries, using the ‘@include’ keyword in conjunction with the
AWKPATH environment variable.

Let’s see an example. We’ll start with two (trivial) awk scripts, namely test1 and test2.
Here is the test1 script:

BEGIN {

print "This is script test1."

}

and here is test2:

@include "test1"

BEGIN {

print "This is script test2."

}

Running gawk with test2 produces the following result:

$ gawk -f test2

a This is file test1.

a This is file test2.

gawk runs the test2 script which includes test1 using the ‘@include’ keyword. So, to
include external awk source files you just use ‘@include’ followed by the name of the file to
be included, enclosed in double quotes.

NOTE: Keep in mind that this is a language construct and the file name cannot
be a string variable, but rather just a literal string in double quotes.

The files to be included may be nested; e.g., given a third script, namely test3:

@include "test2"

BEGIN {

print "This is script test3."

}

Running gawk with the test3 script produces the following results:

$ gawk -f test3

a This is file test1.

a This is file test2.

a This is file test3.

The file name can, of course, be a pathname. For example:

@include "../io_funcs"

or:

@include "/usr/awklib/network"

Chapter 2: Running awk and gawk 35

are valid. The AWKPATH environment variable can be of great value when using ‘@include’.
The same rules for the use of the AWKPATH variable in command-line file searches (see
Section 2.5.1 [The AWKPATH Environment Variable], page 32) apply to ‘@include’ also.

This is very helpful in constructing gawk function libraries. If you have a large script
with useful, general purpose awk functions, you can break it down into library files and put
those files in a special directory. You can then include those “libraries,” using either the
full pathnames of the files, or by setting the AWKPATH environment variable accordingly and
then using ‘@include’ with just the file part of the full pathname. Of course you can have
more than one directory to keep library files; the more complex the working environment
is, the more directories you may need to organize the files to be included.

Given the ability to specify multiple -f options, the ‘@include’ mechanism is not strictly
necessary. However, the ‘@include’ keyword can help you in constructing self-contained
gawk programs, thus reducing the need for writing complex and tedious command lines. In
particular, ‘@include’ is very useful for writing CGI scripts to be run from web pages.

As mentioned in Section 2.5.1 [The AWKPATH Environment Variable], page 32, the current
directory is always searched first for source files, before searching in AWKPATH, and this also
applies to files named with ‘@include’.

2.8 Obsolete Options and/or Features

This section describes features and/or command-line options from previous releases of gawk
that are either not available in the current version or that are still supported but deprecated
(meaning that they will not be in the next release).

The process-related special files /dev/pid, /dev/ppid, /dev/pgrpid, and /dev/user

were deprecated in gawk 3.1, but still worked. As of version 4.0, they are no longer inter-
preted specially by gawk. (Use PROCINFO instead; see Section 7.5.2 [Built-in Variables That
Convey Information], page 131.)

2.9 Undocumented Options and Features

Use the Source, Luke!
Obi-Wan

This section intentionally left blank.

Chapter 3: Regular Expressions 37

3 Regular Expressions

A regular expression, or regexp, is a way of describing a set of strings. Because regular
expressions are such a fundamental part of awk programming, their format and use deserve
a separate chapter.

A regular expression enclosed in slashes (‘/’) is an awk pattern that matches every input
record whose text belongs to that set. The simplest regular expression is a sequence of
letters, numbers, or both. Such a regexp matches any string that contains that sequence.
Thus, the regexp ‘foo’ matches any string containing ‘foo’. Therefore, the pattern /foo/

matches any input record containing the three characters ‘foo’ anywhere in the record.
Other kinds of regexps let you specify more complicated classes of strings.

Initially, the examples in this chapter are simple. As we explain more about how regular
expressions work, we present more complicated instances.

3.1 How to Use Regular Expressions

A regular expression can be used as a pattern by enclosing it in slashes. Then the regular
expression is tested against the entire text of each record. (Normally, it only needs to match
some part of the text in order to succeed.) For example, the following prints the second
field of each record that contains the string ‘foo’ anywhere in it:

$ awk ’/foo/ { print $2 }’ BBS-list

a 555-1234

a 555-6699

a 555-6480

a 555-2127

Regular expressions can also be used in matching expressions. These expressions allow
you to specify the string to match against; it need not be the entire current input record.
The two operators ‘~’ and ‘!~’ perform regular expression comparisons. Expressions using
these operators can be used as patterns, or in if, while, for, and do statements. (See
Section 7.4 [Control Statements in Actions], page 120.) For example:

exp ~ /regexp/

is true if the expression exp (taken as a string) matches regexp. The following example
matches, or selects, all input records with the uppercase letter ‘J’ somewhere in the first
field:

$ awk ’$1 ~ /J/’ inventory-shipped

a Jan 13 25 15 115

a Jun 31 42 75 492

a Jul 24 34 67 436

a Jan 21 36 64 620

So does this:

awk ’{ if ($1 ~ /J/) print }’ inventory-shipped

This next example is true if the expression exp (taken as a character string) does not
match regexp:

exp !~ /regexp/

38 GAWK: Effective AWK Programming

The following example matches, or selects, all input records whose first field does not
contain the uppercase letter ‘J’:

$ awk ’$1 !~ /J/’ inventory-shipped

a Feb 15 32 24 226

a Mar 15 24 34 228

a Apr 31 52 63 420

a May 16 34 29 208

...

When a regexp is enclosed in slashes, such as /foo/, we call it a regexp constant, much
like 5.27 is a numeric constant and "foo" is a string constant.

3.2 Escape Sequences

Some characters cannot be included literally in string constants ("foo") or regexp constants
(/foo/). Instead, they should be represented with escape sequences, which are character
sequences beginning with a backslash (‘\’). One use of an escape sequence is to include a
double-quote character in a string constant. Because a plain double quote ends the string,
you must use ‘\"’ to represent an actual double-quote character as a part of the string. For
example:

$ awk ’BEGIN { print "He said \"hi!\" to her." }’

a He said "hi!" to her.

The backslash character itself is another character that cannot be included normally;
you must write ‘\\’ to put one backslash in the string or regexp. Thus, the string whose
contents are the two characters ‘"’ and ‘\’ must be written "\"\\".

Other escape sequences represent unprintable characters such as TAB or newline. While
there is nothing to stop you from entering most unprintable characters directly in a string
constant or regexp constant, they may look ugly.

The following table lists all the escape sequences used in awk and what they represent.
Unless noted otherwise, all these escape sequences apply to both string constants and regexp
constants:

\\ A literal backslash, ‘\’.

\a The “alert” character, Ctrl-g, ASCII code 7 (BEL). (This usually makes some
sort of audible noise.)

\b Backspace, Ctrl-h, ASCII code 8 (BS).

\f Formfeed, Ctrl-l, ASCII code 12 (FF).

\n Newline, Ctrl-j, ASCII code 10 (LF).

\r Carriage return, Ctrl-m, ASCII code 13 (CR).

\t Horizontal TAB, Ctrl-i, ASCII code 9 (HT).

\v Vertical tab, Ctrl-k, ASCII code 11 (VT).

\nnn The octal value nnn, where nnn stands for 1 to 3 digits between ‘0’ and ‘7’. For
example, the code for the ASCII ESC (escape) character is ‘\033’.

Chapter 3: Regular Expressions 39

\xhh... The hexadecimal value hh, where hh stands for a sequence of hexadecimal digits
(‘0’–‘9’, and either ‘A’–‘F’ or ‘a’–‘f’). Like the same construct in ISO C, the
escape sequence continues until the first nonhexadecimal digit is seen. (c.e.)
However, using more than two hexadecimal digits produces undefined results.
(The ‘\x’ escape sequence is not allowed in POSIX awk.)

\/ A literal slash (necessary for regexp constants only). This sequence is used
when you want to write a regexp constant that contains a slash. Because the
regexp is delimited by slashes, you need to escape the slash that is part of the
pattern, in order to tell awk to keep processing the rest of the regexp.

\" A literal double quote (necessary for string constants only). This sequence is
used when you want to write a string constant that contains a double quote.
Because the string is delimited by double quotes, you need to escape the quote
that is part of the string, in order to tell awk to keep processing the rest of the
string.

In gawk, a number of additional two-character sequences that begin with a backslash have
special meaning in regexps. See Section 3.5 [gawk-Specific Regexp Operators], page 44.

In a regexp, a backslash before any character that is not in the previous list and not listed
in Section 3.5 [gawk-Specific Regexp Operators], page 44, means that the next character
should be taken literally, even if it would normally be a regexp operator. For example,
/a\+b/ matches the three characters ‘a+b’.

For complete portability, do not use a backslash before any character not shown in the
previous list.

To summarize:

• The escape sequences in the table above are always processed first, for both string
constants and regexp constants. This happens very early, as soon as awk reads your
program.

• gawk processes both regexp constants and dynamic regexps (see Section 3.8 [Using
Dynamic Regexps], page 47), for the special operators listed in Section 3.5 [gawk-
Specific Regexp Operators], page 44.

• A backslash before any other character means to treat that character literally.

Advanced Notes: Backslash Before Regular Characters

If you place a backslash in a string constant before something that is not one of the characters
previously listed, POSIX awk purposely leaves what happens as undefined. There are two
choices:

Strip the backslash out
This is what Brian Kernighan’s awk and gawk both do. For example, "a\qc"
is the same as "aqc". (Because this is such an easy bug both to introduce and
to miss, gawk warns you about it.) Consider ‘FS = "[\t]+\|[\t]+"’ to use
vertical bars surrounded by whitespace as the field separator. There should be
two backslashes in the string: ‘FS = "[\t]+\\|[\t]+"’.)

Leave the backslash alone
Some other awk implementations do this. In such implementations, typing
"a\qc" is the same as typing "a\\qc".

40 GAWK: Effective AWK Programming

Advanced Notes: Escape Sequences for Metacharacters

Suppose you use an octal or hexadecimal escape to represent a regexp metacharacter. (See
Section 3.3 [Regular Expression Operators], page 40.) Does awk treat the character as a
literal character or as a regexp operator?

Historically, such characters were taken literally. However, the POSIX standard in-
dicates that they should be treated as real metacharacters, which is what gawk does. In
compatibility mode (see Section 2.2 [Command-Line Options], page 25), gawk treats the
characters represented by octal and hexadecimal escape sequences literally when used in
regexp constants. Thus, /a\52b/ is equivalent to /a*b/.

3.3 Regular Expression Operators

You can combine regular expressions with special characters, called regular expression op-
erators or metacharacters, to increase the power and versatility of regular expressions.

The escape sequences described earlier in Section 3.2 [Escape Sequences], page 38, are
valid inside a regexp. They are introduced by a ‘\’ and are recognized and converted into
corresponding real characters as the very first step in processing regexps.

Here is a list of metacharacters. All characters that are not escape sequences and that
are not listed in the table stand for themselves:

\ This is used to suppress the special meaning of a character when matching. For
example, ‘\$’ matches the character ‘$’.

^ This matches the beginning of a string. For example, ‘^@chapter’ matches
‘@chapter’ at the beginning of a string and can be used to identify chapter
beginnings in Texinfo source files. The ‘^’ is known as an anchor, because it
anchors the pattern to match only at the beginning of the string.

It is important to realize that ‘^’ does not match the beginning of a line em-
bedded in a string. The condition is not true in the following example:

if ("line1\nLINE 2" ~ /^L/) ...

$ This is similar to ‘^’, but it matches only at the end of a string. For example,
‘p$’ matches a record that ends with a ‘p’. The ‘$’ is an anchor and does not
match the end of a line embedded in a string. The condition in the following
example is not true:

if ("line1\nLINE 2" ~ /1$/) ...

. (period) This matches any single character, including the newline character. For ex-
ample, ‘.P’ matches any single character followed by a ‘P’ in a string. Using
concatenation, we can make a regular expression such as ‘U.A’, which matches
any three-character sequence that begins with ‘U’ and ends with ‘A’.

In strict POSIX mode (see Section 2.2 [Command-Line Options], page 25), ‘.’
does not match the nul character, which is a character with all bits equal to
zero. Otherwise, nul is just another character. Other versions of awk may not
be able to match the nul character.

Chapter 3: Regular Expressions 41

[...] This is called a bracket expression.1 It matches any one of the characters that
are enclosed in the square brackets. For example, ‘[MVX]’ matches any one
of the characters ‘M’, ‘V’, or ‘X’ in a string. A full discussion of what can be
inside the square brackets of a bracket expression is given in Section 3.4 [Using
Bracket Expressions], page 42.

[^ ...] This is a complemented bracket expression. The first character after the ‘[’
must be a ‘^’. It matches any characters except those in the square brackets.
For example, ‘[^awk]’ matches any character that is not an ‘a’, ‘w’, or ‘k’.

| This is the alternation operator and it is used to specify alternatives. The
‘|’ has the lowest precedence of all the regular expression operators. For
example, ‘^P|[[:digit:]]’ matches any string that matches either ‘^P’ or
‘[[:digit:]]’. This means it matches any string that starts with ‘P’ or contains
a digit.

The alternation applies to the largest possible regexps on either side.

(...) Parentheses are used for grouping in regular expressions, as in arithmetic. They
can be used to concatenate regular expressions containing the alternation oper-
ator, ‘|’. For example, ‘@(samp|code)\{[^}]+\}’ matches both ‘@code{foo}’
and ‘@samp{bar}’. (These are Texinfo formatting control sequences. The ‘+’ is
explained further on in this list.)

* This symbol means that the preceding regular expression should be repeated
as many times as necessary to find a match. For example, ‘ph*’ applies the ‘*’
symbol to the preceding ‘h’ and looks for matches of one ‘p’ followed by any
number of ‘h’s. This also matches just ‘p’ if no ‘h’s are present.

The ‘*’ repeats the smallest possible preceding expression. (Use parentheses
if you want to repeat a larger expression.) It finds as many repetitions as
possible. For example, ‘awk ’/\(c[ad][ad]*r x\)/ { print }’ sample’ prints
every record in sample containing a string of the form ‘(car x)’, ‘(cdr x)’,
‘(cadr x)’, and so on. Notice the escaping of the parentheses by preceding
them with backslashes.

+ This symbol is similar to ‘*’, except that the preceding expression must be
matched at least once. This means that ‘wh+y’ would match ‘why’ and ‘whhy’,
but not ‘wy’, whereas ‘wh*y’ would match all three of these strings. The follow-
ing is a simpler way of writing the last ‘*’ example:

awk ’/\(c[ad]+r x\)/ { print }’ sample

? This symbol is similar to ‘*’, except that the preceding expression can be
matched either once or not at all. For example, ‘fe?d’ matches ‘fed’ and
‘fd’, but nothing else.

{n}

{n,}

{n,m} One or two numbers inside braces denote an interval expression. If there is one
number in the braces, the preceding regexp is repeated n times. If there are

1 In other literature, you may see a bracket expression referred to as either a character set, a character
class, or a character list.

42 GAWK: Effective AWK Programming

two numbers separated by a comma, the preceding regexp is repeated n to m
times. If there is one number followed by a comma, then the preceding regexp
is repeated at least n times:

wh{3}y Matches ‘whhhy’, but not ‘why’ or ‘whhhhy’.

wh{3,5}y Matches ‘whhhy’, ‘whhhhy’, or ‘whhhhhy’, only.

wh{2,}y Matches ‘whhy’ or ‘whhhy’, and so on.

Interval expressions were not traditionally available in awk. They were added
as part of the POSIX standard to make awk and egrep consistent with each
other.

Initially, because old programs may use ‘{’ and ‘}’ in regexp constants, gawk
did not match interval expressions in regexps.

However, beginning with version 4.0, gawk does match interval expressions by
default. This is because compatibility with POSIX has become more important
to most gawk users than compatibility with old programs.

For programs that use ‘{’ and ‘}’ in regexp constants, it is good practice to
always escape them with a backslash. Then the regexp constants are valid and
work the way you want them to, using any version of awk.2

Finally, when ‘{’ and ‘}’ appear in regexp constants in a way that cannot be
interpreted as an interval expression (such as /q{a}/), then they stand for
themselves.

In regular expressions, the ‘*’, ‘+’, and ‘?’ operators, as well as the braces ‘{’ and ‘}’,
have the highest precedence, followed by concatenation, and finally by ‘|’. As in arithmetic,
parentheses can change how operators are grouped.

In POSIX awk and gawk, the ‘*’, ‘+’, and ‘?’ operators stand for themselves when there
is nothing in the regexp that precedes them. For example, /+/ matches a literal plus sign.
However, many other versions of awk treat such a usage as a syntax error.

If gawk is in compatibility mode (see Section 2.2 [Command-Line Options], page 25),
interval expressions are not available in regular expressions.

3.4 Using Bracket Expressions

As mentioned earlier, a bracket expression matches any character amongst those listed
between the opening and closing square brackets.

Within a bracket expression, a range expression consists of two characters separated by a
hyphen. It matches any single character that sorts between the two characters, based upon
the system’s native character set. For example, ‘[0-9]’ is equivalent to ‘[0123456789]’.
(See Section A.7 [Regexp Ranges and Locales: A Long Sad Story], page 308, for an expla-
nation of how the POSIX standard and gawk have changed over time. This is mainly of
historical interest.)

To include one of the characters ‘\’, ‘]’, ‘-’, or ‘^’ in a bracket expression, put a ‘\’ in
front of it. For example:

2 Use two backslashes if you’re using a string constant with a regexp operator or function.

Chapter 3: Regular Expressions 43

[d\]]

matches either ‘d’ or ‘]’.

This treatment of ‘\’ in bracket expressions is compatible with other awk implementations
and is also mandated by POSIX. The regular expressions in awk are a superset of the POSIX
specification for Extended Regular Expressions (EREs). POSIX EREs are based on the
regular expressions accepted by the traditional egrep utility.

Character classes are a feature introduced in the POSIX standard. A character class is
a special notation for describing lists of characters that have a specific attribute, but the
actual characters can vary from country to country and/or from character set to character
set. For example, the notion of what is an alphabetic character differs between the United
States and France.

A character class is only valid in a regexp inside the brackets of a bracket expression.
Character classes consist of ‘[:’, a keyword denoting the class, and ‘:]’. Table 3.1 lists the
character classes defined by the POSIX standard.

Class Meaning
[:alnum:] Alphanumeric characters.
[:alpha:] Alphabetic characters.
[:blank:] Space and TAB characters.
[:cntrl:] Control characters.
[:digit:] Numeric characters.
[:graph:] Characters that are both printable and visible. (A space is printable but

not visible, whereas an ‘a’ is both.)

[:lower:] Lowercase alphabetic characters.
[:print:] Printable characters (characters that are not control characters).
[:punct:] Punctuation characters (characters that are not letters, digits, control char-

acters, or space characters).

[:space:] Space characters (such as space, TAB, and formfeed, to name a few).
[:upper:] Uppercase alphabetic characters.
[:xdigit:] Characters that are hexadecimal digits.

Table 3.1: POSIX Character Classes

For example, before the POSIX standard, you had to write /[A-Za-z0-9]/ to match
alphanumeric characters. If your character set had other alphabetic characters in it, this
would not match them. With the POSIX character classes, you can write /[[:alnum:]]/

to match the alphabetic and numeric characters in your character set.

Two additional special sequences can appear in bracket expressions. These apply to
non-ASCII character sets, which can have single symbols (called collating elements) that
are represented with more than one character. They can also have several characters that
are equivalent for collating, or sorting, purposes. (For example, in French, a plain “e” and
a grave-accented “è” are equivalent.) These sequences are:

Collating symbols
Multicharacter collating elements enclosed between ‘[.’ and ‘.]’. For example,
if ‘ch’ is a collating element, then [[.ch.]] is a regexp that matches this
collating element, whereas [ch] is a regexp that matches either ‘c’ or ‘h’.

44 GAWK: Effective AWK Programming

Equivalence classes
Locale-specific names for a list of characters that are equal. The name is en-
closed between ‘[=’ and ‘=]’. For example, the name ‘e’ might be used to rep-
resent all of “e,” “è,” and “é.” In this case, [[=e=]] is a regexp that matches
any of ‘e’, ‘é’, or ‘è’.

These features are very valuable in non-English-speaking locales.

CAUTION: The library functions that gawk uses for regular expression match-
ing currently recognize only POSIX character classes; they do not recognize
collating symbols or equivalence classes.

3.5 gawk-Specific Regexp Operators

GNU software that deals with regular expressions provides a number of additional regexp
operators. These operators are described in this section and are specific to gawk; they are
not available in other awk implementations. Most of the additional operators deal with
word matching. For our purposes, a word is a sequence of one or more letters, digits, or
underscores (‘_’):

\s Matches any whitespace character. Think of it as shorthand for [[:space:]].

\S Matches any character that is not whitespace. Think of it as shorthand for
[^[:space:]].

\w Matches any word-constituent character—that is, it matches any letter, digit,
or underscore. Think of it as shorthand for [[:alnum:]_].

\W Matches any character that is not word-constituent. Think of it as shorthand
for [^[:alnum:]_].

\< Matches the empty string at the beginning of a word. For example, /\<away/
matches ‘away’ but not ‘stowaway’.

\> Matches the empty string at the end of a word. For example, /stow\>/ matches
‘stow’ but not ‘stowaway’.

\y Matches the empty string at either the beginning or the end of a word (i.e., the
word boundary). For example, ‘\yballs?\y’ matches either ‘ball’ or ‘balls’,
as a separate word.

\B Matches the empty string that occurs between two word-constituent characters.
For example, /\Brat\B/ matches ‘crate’ but it does not match ‘dirty rat’.
‘\B’ is essentially the opposite of ‘\y’.

There are two other operators that work on buffers. In Emacs, a buffer is, naturally, an
Emacs buffer. For other programs, gawk’s regexp library routines consider the entire string
to match as the buffer. The operators are:

\‘ Matches the empty string at the beginning of a buffer (string).

\’ Matches the empty string at the end of a buffer (string).

Because ‘^’ and ‘$’ always work in terms of the beginning and end of strings, these
operators don’t add any new capabilities for awk. They are provided for compatibility with
other GNU software.

Chapter 3: Regular Expressions 45

In other GNU software, the word-boundary operator is ‘\b’. However, that conflicts
with the awk language’s definition of ‘\b’ as backspace, so gawk uses a different letter. An
alternative method would have been to require two backslashes in the GNU operators, but
this was deemed too confusing. The current method of using ‘\y’ for the GNU ‘\b’ appears
to be the lesser of two evils.

The various command-line options (see Section 2.2 [Command-Line Options], page 25)
control how gawk interprets characters in regexps:

No options
In the default case, gawk provides all the facilities of POSIX regexps and the
previously described GNU regexp operators.

--posix Only POSIX regexps are supported; the GNU operators are not special (e.g.,
‘\w’ matches a literal ‘w’). Interval expressions are allowed.

--traditional

Traditional Unix awk regexps are matched. The GNU operators are not spe-
cial, and interval expressions are not available. The POSIX character classes
([[:alnum:]], etc.) are supported, as Brian Kernighan’s awk does support
them. Characters described by octal and hexadecimal escape sequences are
treated literally, even if they represent regexp metacharacters.

--re-interval

Allow interval expressions in regexps, if --traditional has been provided.
Otherwise, interval expressions are available by default.

3.6 Case Sensitivity in Matching

Case is normally significant in regular expressions, both when matching ordinary characters
(i.e., not metacharacters) and inside bracket expressions. Thus, a ‘w’ in a regular expression
matches only a lowercase ‘w’ and not an uppercase ‘W’.

The simplest way to do a case-independent match is to use a bracket expression—for
example, ‘[Ww]’. However, this can be cumbersome if you need to use it often, and it can
make the regular expressions harder to read. There are two alternatives that you might
prefer.

One way to perform a case-insensitive match at a particular point in the program is
to convert the data to a single case, using the tolower() or toupper() built-in string
functions (which we haven’t discussed yet; see Section 9.1.3 [String-Manipulation Functions],
page 153). For example:

tolower($1) ~ /foo/ { ... }

converts the first field to lowercase before matching against it. This works in any POSIX-
compliant awk.

Another method, specific to gawk, is to set the variable IGNORECASE to a nonzero value
(see Section 7.5 [Built-in Variables], page 128). When IGNORECASE is not zero, all regexp and
string operations ignore case. Changing the value of IGNORECASE dynamically controls the
case-sensitivity of the program as it runs. Case is significant by default because IGNORECASE
(like most variables) is initialized to zero:

46 GAWK: Effective AWK Programming

x = "aB"

if (x ~ /ab/) ... # this test will fail

IGNORECASE = 1

if (x ~ /ab/) ... # now it will succeed

In general, you cannot use IGNORECASE to make certain rules case-insensitive and other
rules case-sensitive, because there is no straightforward way to set IGNORECASE just for
the pattern of a particular rule.3 To do this, use either bracket expressions or tolower().
However, one thing you can do with IGNORECASE only is dynamically turn case-sensitivity
on or off for all the rules at once.

IGNORECASE can be set on the command line or in a BEGIN rule (see Section 2.3 [Other
Command-Line Arguments], page 30; also see Section 7.1.4.1 [Startup and Cleanup Actions],
page 116). Setting IGNORECASE from the command line is a way to make a program case-
insensitive without having to edit it.

Both regexp and string comparison operations are affected by IGNORECASE.

In multibyte locales, the equivalences between upper- and lowercase characters are tested
based on the wide-character values of the locale’s character set. Otherwise, the characters
are tested based on the ISO-8859-1 (ISO Latin-1) character set. This character set is a
superset of the traditional 128 ASCII characters, which also provides a number of characters
suitable for use with European languages.4

The value of IGNORECASE has no effect if gawk is in compatibility mode (see Section 2.2
[Command-Line Options], page 25). Case is always significant in compatibility mode.

3.7 How Much Text Matches?

Consider the following:

echo aaaabcd | awk ’{ sub(/a+/, "<A>"); print }’

This example uses the sub() function (which we haven’t discussed yet; see Section 9.1.3
[String-Manipulation Functions], page 153) to make a change to the input record. Here, the
regexp /a+/ indicates “one or more ‘a’ characters,” and the replacement text is ‘<A>’.

The input contains four ‘a’ characters. awk (and POSIX) regular expressions always
match the leftmost, longest sequence of input characters that can match. Thus, all four ‘a’
characters are replaced with ‘<A>’ in this example:

$ echo aaaabcd | awk ’{ sub(/a+/, "<A>"); print }’

a <A>bcd

For simple match/no-match tests, this is not so important. But when doing text match-
ing and substitutions with the match(), sub(), gsub(), and gensub() functions, it is very
important. Understanding this principle is also important for regexp-based record and field
splitting (see Section 4.1 [How Input Is Split into Records], page 49, and also see Section 4.5
[Specifying How Fields Are Separated], page 56).

3 Experienced C and C++ programmers will note that it is possible, using something like ‘IGNORECASE =

1 && /foObAr/ { ... }’ and ‘IGNORECASE = 0 || /foobar/ { ... }’. However, this is somewhat obscure
and we don’t recommend it.

4 If you don’t understand this, don’t worry about it; it just means that gawk does the right thing.

Chapter 3: Regular Expressions 47

3.8 Using Dynamic Regexps

The righthand side of a ‘~’ or ‘!~’ operator need not be a regexp constant (i.e., a string
of characters between slashes). It may be any expression. The expression is evaluated and
converted to a string if necessary; the contents of the string are then used as the regexp. A
regexp computed in this way is called a dynamic regexp:

BEGIN { digits_regexp = "[[:digit:]]+" }

$0 ~ digits_regexp { print }

This sets digits_regexp to a regexp that describes one or more digits, and tests whether
the input record matches this regexp.

NOTE: When using the ‘~’ and ‘!~’ operators, there is a difference between a
regexp constant enclosed in slashes and a string constant enclosed in double
quotes. If you are going to use a string constant, you have to understand that
the string is, in essence, scanned twice: the first time when awk reads your
program, and the second time when it goes to match the string on the lefthand
side of the operator with the pattern on the right. This is true of any string-
valued expression (such as digits_regexp, shown previously), not just string
constants.

What difference does it make if the string is scanned twice? The answer has to do
with escape sequences, and particularly with backslashes. To get a backslash into a regular
expression inside a string, you have to type two backslashes.

For example, /*/ is a regexp constant for a literal ‘*’. Only one backslash is needed.
To do the same thing with a string, you have to type "*". The first backslash escapes
the second one so that the string actually contains the two characters ‘\’ and ‘*’.

Given that you can use both regexp and string constants to describe regular expressions,
which should you use? The answer is “regexp constants,” for several reasons:

• String constants are more complicated to write and more difficult to read. Using regexp
constants makes your programs less error-prone. Not understanding the difference
between the two kinds of constants is a common source of errors.

• It is more efficient to use regexp constants. awk can note that you have supplied a
regexp and store it internally in a form that makes pattern matching more efficient.
When using a string constant, awk must first convert the string into this internal form
and then perform the pattern matching.

• Using regexp constants is better form; it shows clearly that you intend a regexp match.

Advanced Notes: Using \n in Bracket Expressions of Dynamic
Regexps

Some commercial versions of awk do not allow the newline character to be used inside a
bracket expression for a dynamic regexp:

$ awk ’$0 ~ "[\t\n]"’

error awk: newline in character class [

error]...

error source line number 1

error context is

error >>> <<<

48 GAWK: Effective AWK Programming

But a newline in a regexp constant works with no problem:

$ awk ’$0 ~ /[\t\n]/’

here is a sample line

a here is a sample line

Ctrl-d

gawk does not have this problem, and it isn’t likely to occur often in practice, but it’s
worth noting for future reference.

Chapter 4: Reading Input Files 49

4 Reading Input Files

In the typical awk program, awk reads all input either from the standard input (by default,
this is the keyboard, but often it is a pipe from another command) or from files whose
names you specify on the awk command line. If you specify input files, awk reads them
in order, processing all the data from one before going on to the next. The name of the
current input file can be found in the built-in variable FILENAME (see Section 7.5 [Built-in
Variables], page 128).

The input is read in units called records, and is processed by the rules of your program
one record at a time. By default, each record is one line. Each record is automatically split
into chunks called fields. This makes it more convenient for programs to work on the parts
of a record.

On rare occasions, you may need to use the getline command. The getline command
is valuable, both because it can do explicit input from any number of files, and because
the files used with it do not have to be named on the awk command line (see Section 4.9
[Explicit Input with getline], page 67).

4.1 How Input Is Split into Records

The awk utility divides the input for your awk program into records and fields. awk keeps
track of the number of records that have been read so far from the current input file. This
value is stored in a built-in variable called FNR. It is reset to zero when a new file is started.
Another built-in variable, NR, records the total number of input records read so far from all
data files. It starts at zero, but is never automatically reset to zero.

Records are separated by a character called the record separator. By default, the record
separator is the newline character. This is why records are, by default, single lines. A
different character can be used for the record separator by assigning the character to the
built-in variable RS.

Like any other variable, the value of RS can be changed in the awk program with the
assignment operator, ‘=’ (see Section 6.2.3 [Assignment Expressions], page 100). The new
record-separator character should be enclosed in quotation marks, which indicate a string
constant. Often the right time to do this is at the beginning of execution, before any input is
processed, so that the very first record is read with the proper separator. To do this, use the
special BEGIN pattern (see Section 7.1.4 [The BEGIN and END Special Patterns], page 116).
For example:

awk ’BEGIN { RS = "/" }

{ print $0 }’ BBS-list

changes the value of RS to "/", before reading any input. This is a string whose first
character is a slash; as a result, records are separated by slashes. Then the input file is
read, and the second rule in the awk program (the action with no pattern) prints each
record. Because each print statement adds a newline at the end of its output, this awk

program copies the input with each slash changed to a newline. Here are the results of
running the program on BBS-list:

$ awk ’BEGIN { RS = "/" }

> { print $0 }’ BBS-list

a aardvark 555-5553 1200

50 GAWK: Effective AWK Programming

a 300 B

a alpo-net 555-3412 2400

a 1200

a 300 A

a barfly 555-7685 1200

a 300 A

a bites 555-1675 2400

a 1200

a 300 A

a camelot 555-0542 300 C

a core 555-2912 1200

a 300 C

a fooey 555-1234 2400

a 1200

a 300 B

a foot 555-6699 1200

a 300 B

a macfoo 555-6480 1200

a 300 A

a sdace 555-3430 2400

a 1200

a 300 A

a sabafoo 555-2127 1200

a 300 C

a
Note that the entry for the ‘camelot’ BBS is not split. In the original data file (see
Section 1.2 [Data Files for the Examples], page 16), the line looks like this:

camelot 555-0542 300 C

It has one baud rate only, so there are no slashes in the record, unlike the others which have
two or more baud rates. In fact, this record is treated as part of the record for the ‘core’
BBS; the newline separating them in the output is the original newline in the data file, not
the one added by awk when it printed the record!

Another way to change the record separator is on the command line, using the variable-
assignment feature (see Section 2.3 [Other Command-Line Arguments], page 30):

awk ’{ print $0 }’ RS="/" BBS-list

This sets RS to ‘/’ before processing BBS-list.

Using an unusual character such as ‘/’ for the record separator produces correct behavior
in the vast majority of cases.

There is one unusual case, that occurs when gawk is being fully POSIX-compliant (see
Section 2.2 [Command-Line Options], page 25). Then, the following (extreme) pipeline
prints a surprising ‘1’:

$ echo | gawk --posix ’BEGIN { RS = "a" } ; { print NF }’

a 1

Chapter 4: Reading Input Files 51

There is one field, consisting of a newline. The value of the built-in variable NF is the
number of fields in the current record. (In the normal case, gawk treats the newline as
whitespace, printing ‘0’ as the result. Most other versions of awk also act this way.)

Reaching the end of an input file terminates the current input record, even if the last
character in the file is not the character in RS.

The empty string "" (a string without any characters) has a special meaning as the value
of RS. It means that records are separated by one or more blank lines and nothing else. See
Section 4.8 [Multiple-Line Records], page 64, for more details.

If you change the value of RS in the middle of an awk run, the new value is used to
delimit subsequent records, but the record currently being processed, as well as records
already processed, are not affected.

After the end of the record has been determined, gawk sets the variable RT to the text
in the input that matched RS.

When using gawk, the value of RS is not limited to a one-character string. It can be
any regular expression (see Chapter 3 [Regular Expressions], page 37). (c.e.) In general,
each record ends at the next string that matches the regular expression; the next record
starts at the end of the matching string. This general rule is actually at work in the usual
case, where RS contains just a newline: a record ends at the beginning of the next matching
string (the next newline in the input), and the following record starts just after the end of
this string (at the first character of the following line). The newline, because it matches RS,
is not part of either record.

When RS is a single character, RT contains the same single character. However, when RS is
a regular expression, RT contains the actual input text that matched the regular expression.

If the input file ended without any text that matches RS, gawk sets RT to the null string.

The following example illustrates both of these features. It sets RS equal to a regular
expression that matches either a newline or a series of one or more uppercase letters with
optional leading and/or trailing whitespace:

$ echo record 1 AAAA record 2 BBBB record 3 |

> gawk ’BEGIN { RS = "\n|(*[[:upper:]]+ *)" }

> { print "Record =", $0, "and RT =", RT }’

a Record = record 1 and RT = AAAA

a Record = record 2 and RT = BBBB

a Record = record 3 and RT =

a
The final line of output has an extra blank line. This is because the value of RT is a newline,
and the print statement supplies its own terminating newline. See Section 13.3.8 [A Simple
Stream Editor], page 276, for a more useful example of RS as a regexp and RT.

If you set RS to a regular expression that allows optional trailing text, such as ‘RS =

"abc(XYZ)?"’ it is possible, due to implementation constraints, that gawk may match the
leading part of the regular expression, but not the trailing part, particularly if the input
text that could match the trailing part is fairly long. gawk attempts to avoid this problem,
but currently, there’s no guarantee that this will never happen.

NOTE: Remember that in awk, the ‘^’ and ‘$’ anchor metacharacters match the
beginning and end of a string, and not the beginning and end of a line. As a

52 GAWK: Effective AWK Programming

result, something like ‘RS = "^[[:upper:]]"’ can only match at the beginning
of a file. This is because gawk views the input file as one long string that
happens to contain newline characters in it. It is thus best to avoid anchor
characters in the value of RS.

The use of RS as a regular expression and the RT variable are gawk extensions; they are
not available in compatibility mode (see Section 2.2 [Command-Line Options], page 25). In
compatibility mode, only the first character of the value of RS is used to determine the end
of the record.

Advanced Notes: RS = "\0" Is Not Portable

There are times when you might want to treat an entire data file as a single record. The
only way to make this happen is to give RS a value that you know doesn’t occur in the input
file. This is hard to do in a general way, such that a program always works for arbitrary
input files.

You might think that for text files, the nul character, which consists of a character with
all bits equal to zero, is a good value to use for RS in this case:

BEGIN { RS = "\0" } # whole file becomes one record?

gawk in fact accepts this, and uses the nul character for the record separator. However,
this usage is not portable to other awk implementations.

All other awk implementations1 store strings internally as C-style strings. C strings use
the nul character as the string terminator. In effect, this means that ‘RS = "\0"’ is the
same as ‘RS = ""’.

The best way to treat a whole file as a single record is to simply read the file in, one
record at a time, concatenating each record onto the end of the previous ones.

4.2 Examining Fields

When awk reads an input record, the record is automatically parsed or separated by the awk
utility into chunks called fields. By default, fields are separated by whitespace, like words
in a line. Whitespace in awk means any string of one or more spaces, TABs, or newlines;2

other characters, such as formfeed, vertical tab, etc., that are considered whitespace by
other languages, are not considered whitespace by awk.

The purpose of fields is to make it more convenient for you to refer to these pieces of the
record. You don’t have to use them—you can operate on the whole record if you want—but
fields are what make simple awk programs so powerful.

A dollar-sign (‘$’) is used to refer to a field in an awk program, followed by the number
of the field you want. Thus, $1 refers to the first field, $2 to the second, and so on. (Unlike
the Unix shells, the field numbers are not limited to single digits. $127 is the one hundred
twenty-seventh field in the record.) For example, suppose the following is a line of input:

This seems like a pretty nice example.

Here the first field, or $1, is ‘This’, the second field, or $2, is ‘seems’, and so on. Note that
the last field, $7, is ‘example.’. Because there is no space between the ‘e’ and the ‘.’, the
period is considered part of the seventh field.

1 At least that we know about.
2 In POSIX awk, newlines are not considered whitespace for separating fields.

Chapter 4: Reading Input Files 53

NF is a built-in variable whose value is the number of fields in the current record. awk

automatically updates the value of NF each time it reads a record. No matter how many
fields there are, the last field in a record can be represented by $NF. So, $NF is the same as
$7, which is ‘example.’. If you try to reference a field beyond the last one (such as $8 when
the record has only seven fields), you get the empty string. (If used in a numeric operation,
you get zero.)

The use of $0, which looks like a reference to the “zero-th” field, is a special case: it
represents the whole input record when you are not interested in specific fields. Here are
some more examples:

$ awk ’$1 ~ /foo/ { print $0 }’ BBS-list

a fooey 555-1234 2400/1200/300 B

a foot 555-6699 1200/300 B

a macfoo 555-6480 1200/300 A

a sabafoo 555-2127 1200/300 C

This example prints each record in the file BBS-list whose first field contains the string
‘foo’. The operator ‘~’ is called a matching operator (see Section 3.1 [How to Use Regular
Expressions], page 37); it tests whether a string (here, the field $1) matches a given regular
expression.

By contrast, the following example looks for ‘foo’ in the entire record and prints the
first field and the last field for each matching input record:

$ awk ’/foo/ { print $1, $NF }’ BBS-list

a fooey B

a foot B

a macfoo A

a sabafoo C

4.3 Nonconstant Field Numbers

The number of a field does not need to be a constant. Any expression in the awk language
can be used after a ‘$’ to refer to a field. The value of the expression specifies the field
number. If the value is a string, rather than a number, it is converted to a number. Consider
this example:

awk ’{ print $NR }’

Recall that NR is the number of records read so far: one in the first record, two in the
second, etc. So this example prints the first field of the first record, the second field of the
second record, and so on. For the twentieth record, field number 20 is printed; most likely,
the record has fewer than 20 fields, so this prints a blank line. Here is another example of
using expressions as field numbers:

awk ’{ print $(2*2) }’ BBS-list

awk evaluates the expression ‘(2*2)’ and uses its value as the number of the field to
print. The ‘*’ sign represents multiplication, so the expression ‘2*2’ evaluates to four. The
parentheses are used so that the multiplication is done before the ‘$’ operation; they are
necessary whenever there is a binary operator in the field-number expression. This example,
then, prints the hours of operation (the fourth field) for every line of the file BBS-list. (All
of the awk operators are listed, in order of decreasing precedence, in Section 6.5 [Operator
Precedence (How Operators Nest)], page 111.)

54 GAWK: Effective AWK Programming

If the field number you compute is zero, you get the entire record. Thus, ‘$(2-2)’ has the
same value as $0. Negative field numbers are not allowed; trying to reference one usually
terminates the program. (The POSIX standard does not define what happens when you
reference a negative field number. gawk notices this and terminates your program. Other
awk implementations may behave differently.)

As mentioned in Section 4.2 [Examining Fields], page 52, awk stores the current record’s
number of fields in the built-in variable NF (also see Section 7.5 [Built-in Variables],
page 128). The expression $NF is not a special feature—it is the direct consequence of
evaluating NF and using its value as a field number.

4.4 Changing the Contents of a Field

The contents of a field, as seen by awk, can be changed within an awk program; this changes
what awk perceives as the current input record. (The actual input is untouched; awk never
modifies the input file.) Consider the following example and its output:

$ awk ’{ nboxes = $3 ; $3 = $3 - 10

> print nboxes, $3 }’ inventory-shipped

a 25 15

a 32 22

a 24 14

...

The program first saves the original value of field three in the variable nboxes. The ‘-’
sign represents subtraction, so this program reassigns field three, $3, as the original value of
field three minus ten: ‘$3 - 10’. (See Section 6.2.1 [Arithmetic Operators], page 97.) Then
it prints the original and new values for field three. (Someone in the warehouse made a
consistent mistake while inventorying the red boxes.)

For this to work, the text in field $3must make sense as a number; the string of characters
must be converted to a number for the computer to do arithmetic on it. The number
resulting from the subtraction is converted back to a string of characters that then becomes
field three. See Section 6.1.4 [Conversion of Strings and Numbers], page 95.

When the value of a field is changed (as perceived by awk), the text of the input record
is recalculated to contain the new field where the old one was. In other words, $0 changes
to reflect the altered field. Thus, this program prints a copy of the input file, with 10
subtracted from the second field of each line:

$ awk ’{ $2 = $2 - 10; print $0 }’ inventory-shipped

a Jan 3 25 15 115

a Feb 5 32 24 226

a Mar 5 24 34 228

...

It is also possible to also assign contents to fields that are out of range. For example:

$ awk ’{ $6 = ($5 + $4 + $3 + $2)

> print $6 }’ inventory-shipped

a 168

a 297

a 301

Chapter 4: Reading Input Files 55

...

We’ve just created $6, whose value is the sum of fields $2, $3, $4, and $5. The ‘+’ sign
represents addition. For the file inventory-shipped, $6 represents the total number of
parcels shipped for a particular month.

Creating a new field changes awk’s internal copy of the current input record, which is
the value of $0. Thus, if you do ‘print $0’ after adding a field, the record printed includes
the new field, with the appropriate number of field separators between it and the previously
existing fields.

This recomputation affects and is affected by NF (the number of fields; see Section 4.2
[Examining Fields], page 52). For example, the value of NF is set to the number of the
highest field you create. The exact format of $0 is also affected by a feature that has
not been discussed yet: the output field separator, OFS, used to separate the fields (see
Section 5.3 [Output Separators], page 77).

Note, however, that merely referencing an out-of-range field does not change the value
of either $0 or NF. Referencing an out-of-range field only produces an empty string. For
example:

if ($(NF+1) != "")

print "can’t happen"

else

print "everything is normal"

should print ‘everything is normal’, because NF+1 is certain to be out of range. (See
Section 7.4.1 [The if-else Statement], page 120, for more information about awk’s if-else
statements. See Section 6.3.2 [Variable Typing and Comparison Expressions], page 104, for
more information about the ‘!=’ operator.)

It is important to note that making an assignment to an existing field changes the value
of $0 but does not change the value of NF, even when you assign the empty string to a field.
For example:

$ echo a b c d | awk ’{ OFS = ":"; $2 = ""

> print $0; print NF }’

a a::c:d

a 4

The field is still there; it just has an empty value, denoted by the two colons between ‘a’
and ‘c’. This example shows what happens if you create a new field:

$ echo a b c d | awk ’{ OFS = ":"; $2 = ""; $6 = "new"

> print $0; print NF }’

a a::c:d::new

a 6

The intervening field, $5, is created with an empty value (indicated by the second pair of
adjacent colons), and NF is updated with the value six.

Decrementing NF throws away the values of the fields after the new value of NF and
recomputes $0. Here is an example:

$ echo a b c d e f | awk ’{ print "NF =", NF;

> NF = 3; print $0 }’

a NF = 6

56 GAWK: Effective AWK Programming

a a b c

CAUTION: Some versions of awk don’t rebuild $0 when NF is decremented.
Caveat emptor.

Finally, there are times when it is convenient to force awk to rebuild the entire record,
using the current value of the fields and OFS. To do this, use the seemingly innocuous
assignment:

$1 = $1 # force record to be reconstituted

print $0 # or whatever else with $0

This forces awk to rebuild the record. It does help to add a comment, as we’ve shown here.

There is a flip side to the relationship between $0 and the fields. Any assignment to $0

causes the record to be reparsed into fields using the current value of FS. This also applies
to any built-in function that updates $0, such as sub() and gsub() (see Section 9.1.3
[String-Manipulation Functions], page 153).

Advanced Notes: Understanding $0

It is important to remember that $0 is the full record, exactly as it was read from the
input. This includes any leading or trailing whitespace, and the exact whitespace (or other
characters) that separate the fields.

It is a not-uncommon error to try to change the field separators in a record simply by
setting FS and OFS, and then expecting a plain ‘print’ or ‘print $0’ to print the modified
record.

But this does not work, since nothing was done to change the record itself. Instead,
you must force the record to be rebuilt, typically with a statement such as ‘$1 = $1’, as
described earlier.

4.5 Specifying How Fields Are Separated

The field separator, which is either a single character or a regular expression, controls the
way awk splits an input record into fields. awk scans the input record for character sequences
that match the separator; the fields themselves are the text between the matches.

In the examples that follow, we use the bullet symbol (•) to represent spaces in the
output. If the field separator is ‘oo’, then the following line:

moo goo gai pan

is split into three fields: ‘m’, ‘•g’, and ‘•gai•pan’. Note the leading spaces in the values of
the second and third fields.

The field separator is represented by the built-in variable FS. Shell programmers take
note: awk does not use the name IFS that is used by the POSIX-compliant shells (such as
the Unix Bourne shell, sh, or Bash).

The value of FS can be changed in the awk program with the assignment operator, ‘=’
(see Section 6.2.3 [Assignment Expressions], page 100). Often the right time to do this is
at the beginning of execution before any input has been processed, so that the very first
record is read with the proper separator. To do this, use the special BEGIN pattern (see
Section 7.1.4 [The BEGIN and END Special Patterns], page 116). For example, here we set
the value of FS to the string ",":

Chapter 4: Reading Input Files 57

awk ’BEGIN { FS = "," } ; { print $2 }’

Given the input line:

John Q. Smith, 29 Oak St., Walamazoo, MI 42139

this awk program extracts and prints the string ‘•29•Oak•St.’.
Sometimes the input data contains separator characters that don’t separate fields the

way you thought they would. For instance, the person’s name in the example we just used
might have a title or suffix attached, such as:

John Q. Smith, LXIX, 29 Oak St., Walamazoo, MI 42139

The same program would extract ‘•LXIX’, instead of ‘•29•Oak•St.’. If you were expecting
the program to print the address, you would be surprised. The moral is to choose your data
layout and separator characters carefully to prevent such problems. (If the data is not in a
form that is easy to process, perhaps you can massage it first with a separate awk program.)

4.5.1 Whitespace Normally Separates Fields

Fields are normally separated by whitespace sequences (spaces, TABs, and newlines), not
by single spaces. Two spaces in a row do not delimit an empty field. The default value of
the field separator FS is a string containing a single space, " ". If awk interpreted this value
in the usual way, each space character would separate fields, so two spaces in a row would
make an empty field between them. The reason this does not happen is that a single space
as the value of FS is a special case—it is taken to specify the default manner of delimiting
fields.

If FS is any other single character, such as ",", then each occurrence of that character
separates two fields. Two consecutive occurrences delimit an empty field. If the character
occurs at the beginning or the end of the line, that too delimits an empty field. The space
character is the only single character that does not follow these rules.

4.5.2 Using Regular Expressions to Separate Fields

The previous subsection discussed the use of single characters or simple strings as the value
of FS. More generally, the value of FS may be a string containing any regular expression. In
this case, each match in the record for the regular expression separates fields. For example,
the assignment:

FS = ", \t"

makes every area of an input line that consists of a comma followed by a space and a TAB
into a field separator.

For a less trivial example of a regular expression, try using single spaces to separate
fields the way single commas are used. FS can be set to "[]" (left bracket, space, right
bracket). This regular expression matches a single space and nothing else (see Chapter 3
[Regular Expressions], page 37).

There is an important difference between the two cases of ‘FS = " "’ (a single space) and
‘FS = "[\t\n]+"’ (a regular expression matching one or more spaces, TABs, or newlines).
For both values of FS, fields are separated by runs (multiple adjacent occurrences) of spaces,
TABs, and/or newlines. However, when the value of FS is " ", awk first strips leading and
trailing whitespace from the record and then decides where the fields are. For example, the
following pipeline prints ‘b’:

58 GAWK: Effective AWK Programming

$ echo ’ a b c d ’ | awk ’{ print $2 }’

a b

However, this pipeline prints ‘a’ (note the extra spaces around each letter):

$ echo ’ a b c d ’ | awk ’BEGIN { FS = "[\t\n]+" }

> { print $2 }’

a a

In this case, the first field is null or empty.

The stripping of leading and trailing whitespace also comes into play whenever $0 is
recomputed. For instance, study this pipeline:

$ echo ’ a b c d’ | awk ’{ print; $2 = $2; print }’

a a b c d

a a b c d

The first print statement prints the record as it was read, with leading whitespace intact.
The assignment to $2 rebuilds $0 by concatenating $1 through $NF together, separated by
the value of OFS. Because the leading whitespace was ignored when finding $1, it is not
part of the new $0. Finally, the last print statement prints the new $0.

There is an additional subtlety to be aware of when using regular expressions for field
splitting. It is not well-specified in the POSIX standard, or anywhere else, what ‘^’ means
when splitting fields. Does the ‘^’ match only at the beginning of the entire record? Or
is each field separator a new string? It turns out that different awk versions answer this
question differently, and you should not rely on any specific behavior in your programs.

As a point of information, Brian Kernighan’s awk allows ‘^’ to match only at the begin-
ning of the record. gawk also works this way. For example:

$ echo ’xxAA xxBxx C’ |

> gawk -F ’(^x+)|(+)’ ’{ for (i = 1; i <= NF; i++)

> printf "-->%s<--\n", $i }’

a --><--

a -->AA<--

a -->xxBxx<--

a -->C<--

4.5.3 Making Each Character a Separate Field

There are times when you may want to examine each character of a record separately. This
can be done in gawk by simply assigning the null string ("") to FS. (c.e.) In this case, each
individual character in the record becomes a separate field. For example:

$ echo a b | gawk ’BEGIN { FS = "" }

> {

> for (i = 1; i <= NF; i = i + 1)

> print "Field", i, "is", $i
> }’

a Field 1 is a

a Field 2 is

a Field 3 is b

Traditionally, the behavior of FS equal to "" was not defined. In this case, most versions
of Unix awk simply treat the entire record as only having one field. In compatibility mode

Chapter 4: Reading Input Files 59

(see Section 2.2 [Command-Line Options], page 25), if FS is the null string, then gawk also
behaves this way.

4.5.4 Setting FS from the Command Line

FS can be set on the command line. Use the -F option to do so. For example:

awk -F, ’program’ input-files

sets FS to the ‘,’ character. Notice that the option uses an uppercase ‘F’ instead of a
lowercase ‘f’. The latter option (-f) specifies a file containing an awk program. Case is
significant in command-line options: the -F and -f options have nothing to do with each
other. You can use both options at the same time to set the FS variable and get an awk

program from a file.

The value used for the argument to -F is processed in exactly the same way as assign-
ments to the built-in variable FS. Any special characters in the field separator must be
escaped appropriately. For example, to use a ‘\’ as the field separator on the command
line, you would have to type:

same as FS = "\\"

awk -F\\\\ ’...’ files ...

Because ‘\’ is used for quoting in the shell, awk sees ‘-F\\’. Then awk processes the ‘\\’ for
escape characters (see Section 3.2 [Escape Sequences], page 38), finally yielding a single ‘\’
to use for the field separator.

As a special case, in compatibility mode (see Section 2.2 [Command-Line Options],
page 25), if the argument to -F is ‘t’, then FS is set to the TAB character. If you type
‘-F\t’ at the shell, without any quotes, the ‘\’ gets deleted, so awk figures that you really
want your fields to be separated with TABs and not ‘t’s. Use ‘-v FS="t"’ or ‘-F"[t]"’ on
the command line if you really do want to separate your fields with ‘t’s.

As an example, let’s use an awk program file called baud.awk that contains the pattern
/300/ and the action ‘print $1’:

/300/ { print $1 }

Let’s also set FS to be the ‘-’ character and run the program on the file BBS-list. The
following command prints a list of the names of the bulletin boards that operate at 300
baud and the first three digits of their phone numbers:

$ awk -F- -f baud.awk BBS-list

a aardvark 555

a alpo

a barfly 555

a bites 555

a camelot 555

a core 555

a fooey 555

a foot 555

a macfoo 555

a sdace 555

a sabafoo 555

Note the second line of output. The second line in the original file looked like this:

60 GAWK: Effective AWK Programming

alpo-net 555-3412 2400/1200/300 A

The ‘-’ as part of the system’s name was used as the field separator, instead of the ‘-’
in the phone number that was originally intended. This demonstrates why you have to be
careful in choosing your field and record separators.

Perhaps the most common use of a single character as the field separator occurs when
processing the Unix system password file. On many Unix systems, each user has a separate
entry in the system password file, one line per user. The information in these lines is
separated by colons. The first field is the user’s login name and the second is the user’s
(encrypted or shadow) password. A password file entry might look like this:

arnold:xyzzy:2076:10:Arnold Robbins:/home/arnold:/bin/bash

The following program searches the system password file and prints the entries for users
who have no password:

awk -F: ’$2 == ""’ /etc/passwd

4.5.5 Field-Splitting Summary

It is important to remember that when you assign a string constant as the value of FS,
it undergoes normal awk string processing. For example, with Unix awk and gawk, the
assignment ‘FS = "\.."’ assigns the character string ".." to FS (the backslash is stripped).
This creates a regexp meaning “fields are separated by occurrences of any two characters.”
If instead you want fields to be separated by a literal period followed by any single character,
use ‘FS = "\\.."’.

The following table summarizes how fields are split, based on the value of FS (‘==’ means
“is equal to”):

FS == " " Fields are separated by runs of whitespace. Leading and trailing whitespace
are ignored. This is the default.

FS == any other single character

Fields are separated by each occurrence of the character. Multiple successive
occurrences delimit empty fields, as do leading and trailing occurrences. The
character can even be a regexp metacharacter; it does not need to be escaped.

FS == regexp

Fields are separated by occurrences of characters that match regexp. Leading
and trailing matches of regexp delimit empty fields.

FS == "" Each individual character in the record becomes a separate field. (This is a
gawk extension; it is not specified by the POSIX standard.)

Advanced Notes: Changing FS Does Not Affect the Fields

According to the POSIX standard, awk is supposed to behave as if each record is split into
fields at the time it is read. In particular, this means that if you change the value of FS
after a record is read, the value of the fields (i.e., how they were split) should reflect the old
value of FS, not the new one.

However, many older implementations of awk do not work this way. Instead, they defer
splitting the fields until a field is actually referenced. The fields are split using the current
value of FS! This behavior can be difficult to diagnose. The following example illustrates

Chapter 4: Reading Input Files 61

the difference between the two methods. (The sed3 command prints just the first line of
/etc/passwd.)

sed 1q /etc/passwd | awk ’{ FS = ":" ; print $1 }’

which usually prints:

root

on an incorrect implementation of awk, while gawk prints something like:

root:nSijPlPhZZwgE:0:0:Root:/:

Advanced Notes: FS and IGNORECASE

The IGNORECASE variable (see Section 7.5.1 [Built-in Variables That Control awk], page 129)
affects field splitting only when the value of FS is a regexp. It has no effect when FS is a
single character, even if that character is a letter. Thus, in the following code:

FS = "c"

IGNORECASE = 1

$0 = "aCa"

print $1

The output is ‘aCa’. If you really want to split fields on an alphabetic character while ignor-
ing case, use a regexp that will do it for you. E.g., ‘FS = "[c]"’. In this case, IGNORECASE
will take effect.

4.6 Reading Fixed-Width Data

NOTE: This section discusses an advanced feature of gawk. If you are a novice
awk user, you might want to skip it on the first reading.

gawk provides a facility for dealing with fixed-width fields with no distinctive field sepa-
rator. For example, data of this nature arises in the input for old Fortran programs where
numbers are run together, or in the output of programs that did not anticipate the use of
their output as input for other programs.

An example of the latter is a table where all the columns are lined up by the use of
a variable number of spaces and empty fields are just spaces. Clearly, awk’s normal field
splitting based on FS does not work well in this case. Although a portable awk program
can use a series of substr() calls on $0 (see Section 9.1.3 [String-Manipulation Functions],
page 153), this is awkward and inefficient for a large number of fields.

The splitting of an input record into fixed-width fields is specified by assigning a string
containing space-separated numbers to the built-in variable FIELDWIDTHS. Each number
specifies the width of the field, including columns between fields. If you want to ignore the
columns between fields, you can specify the width as a separate field that is subsequently
ignored. It is a fatal error to supply a field width that is not a positive number. The following
data is the output of the Unix w utility. It is useful to illustrate the use of FIELDWIDTHS:

3 The sed utility is a “stream editor.” Its behavior is also defined by the POSIX standard.

62 GAWK: Effective AWK Programming

10:06pm up 21 days, 14:04, 23 users

User tty login idle JCPU PCPU what

hzuo ttyV0 8:58pm 9 5 vi p24.tex

hzang ttyV3 6:37pm 50 -csh

eklye ttyV5 9:53pm 7 1 em thes.tex

dportein ttyV6 8:17pm 1:47 -csh

gierd ttyD3 10:00pm 1 elm

dave ttyD4 9:47pm 4 4 w

brent ttyp0 26Jun91 4:46 26:46 4:41 bash

dave ttyq4 26Jun9115days 46 46 wnewmail

The following program takes the above input, converts the idle time to number of seconds,
and prints out the first two fields and the calculated idle time:

NOTE: This program uses a number of awk features that haven’t been intro-
duced yet.

BEGIN { FIELDWIDTHS = "9 6 10 6 7 7 35" }

NR > 2 {

idle = $4

sub(/^ */, "", idle) # strip leading spaces

if (idle == "")

idle = 0

if (idle ~ /:/) {

split(idle, t, ":")

idle = t[1] * 60 + t[2]

}

if (idle ~ /days/)

idle *= 24 * 60 * 60

print $1, $2, idle

}

Running the program on the data produces the following results:

hzuo ttyV0 0

hzang ttyV3 50

eklye ttyV5 0

dportein ttyV6 107

gierd ttyD3 1

dave ttyD4 0

brent ttyp0 286

dave ttyq4 1296000

Another (possibly more practical) example of fixed-width input data is the input from
a deck of balloting cards. In some parts of the United States, voters mark their choices by
punching holes in computer cards. These cards are then processed to count the votes for
any particular candidate or on any particular issue. Because a voter may choose not to vote
on some issue, any column on the card may be empty. An awk program for processing such
data could use the FIELDWIDTHS feature to simplify reading the data. (Of course, getting
gawk to run on a system with card readers is another story!)

Chapter 4: Reading Input Files 63

Assigning a value to FS causes gawk to use FS for field splitting again. Use ‘FS = FS’ to
make this happen, without having to know the current value of FS. In order to tell which
kind of field splitting is in effect, use PROCINFO["FS"] (see Section 7.5.2 [Built-in Variables
That Convey Information], page 131). The value is "FS" if regular field splitting is being
used, or it is "FIELDWIDTHS" if fixed-width field splitting is being used:

if (PROCINFO["FS"] == "FS")

regular field splitting ...

else if (PROCINFO["FS"] == "FIELDWIDTHS")

fixed-width field splitting ...

else

content-based field splitting ... (see next section)

This information is useful when writing a function that needs to temporarily change FS
or FIELDWIDTHS, read some records, and then restore the original settings (see Section 12.5
[Reading the User Database], page 232, for an example of such a function).

4.7 Defining Fields By Content

NOTE: This section discusses an advanced feature of gawk. If you are a novice
awk user, you might want to skip it on the first reading.

Normally, when using FS, gawk defines the fields as the parts of the record that occur in
between each field separator. In other words, FS defines what a field is not, instead of what
a field is. However, there are times when you really want to define the fields by what they
are, and not by what they are not.

The most notorious such case is so-called comma separated value (CSV) data. Many
spreadsheet programs, for example, can export their data into text files, where each record
is terminated with a newline, and fields are separated by commas. If only commas separated
the data, there wouldn’t be an issue. The problem comes when one of the fields contains an
embedded comma. While there is no formal standard specification for CSV data4, in such
cases, most programs embed the field in double quotes. So we might have data like this:

Robbins,Arnold,"1234 A Pretty Street, NE",MyTown,MyState,12345-6789,USA

The FPAT variable offers a solution for cases like this. The value of FPAT should be a
string that provides a regular expression. This regular expression describes the contents of
each field.

In the case of CSV data as presented above, each field is either “anything that is not
a comma,” or “a double quote, anything that is not a double quote, and a closing double
quote.” If written as a regular expression constant (see Chapter 3 [Regular Expressions],
page 37), we would have /([^,]+)|("[^"]+")/. Writing this as a string requires us to
escape the double quotes, leading to:

FPAT = "([^,]+)|(\"[^\"]+\")"

Putting this to use, here is a simple program to parse the data:

BEGIN {

FPAT = "([^,]+)|(\"[^\"]+\")"

}

4 At least, we don’t know of one.

64 GAWK: Effective AWK Programming

{

print "NF = ", NF

for (i = 1; i <= NF; i++) {

printf("$%d = <%s>\n", i, $i)

}

}

When run, we get the following:

$ gawk -f simple-csv.awk addresses.csv

NF = 7

$1 = <Robbins>

$2 = <Arnold>

$3 = <"1234 A Pretty Street, NE">

$4 = <MyTown>

$5 = <MyState>

$6 = <12345-6789>

$7 = <USA>

Note the embedded comma in the value of $3.

A straightforward improvement when processing CSV data of this sort would be to
remove the quotes when they occur, with something like this:

if (substr($i, 1, 1) == "\"") {

len = length($i)

$i = substr($i, 2, len - 2) # Get text within the two quotes

}

As with FS, the IGNORECASE variable (see Section 7.5.1 [Built-in Variables That Control
awk], page 129) affects field splitting with FPAT.

Similar to FIELDWIDTHS, the value of PROCINFO["FS"] will be "FPAT" if content-based
field splitting is being used.

NOTE: Some programs export CSV data that contains embedded newlines
between the double quotes. gawk provides no way to deal with this. Since there
is no formal specification for CSV data, there isn’t much more to be done; the
FPAT mechanism provides an elegant solution for the majority of cases, and the
gawk maintainer is satisfied with that.

As written, the regexp used for FPAT requires that each field have a least one character.
A straightforward modification (changing changed the first ‘+’ to ‘*’) allows fields to be
empty:

FPAT = "([^,]*)|(\"[^\"]+\")"

Finally, the patsplit() function makes the same functionality available for splitting
regular strings (see Section 9.1.3 [String-Manipulation Functions], page 153).

4.8 Multiple-Line Records

In some databases, a single line cannot conveniently hold all the information in one entry.
In such cases, you can use multiline records. The first step in doing this is to choose your
data format.

Chapter 4: Reading Input Files 65

One technique is to use an unusual character or string to separate records. For example,
you could use the formfeed character (written ‘\f’ in awk, as in C) to separate them, making
each record a page of the file. To do this, just set the variable RS to "\f" (a string containing
the formfeed character). Any other character could equally well be used, as long as it won’t
be part of the data in a record.

Another technique is to have blank lines separate records. By a special dispensation, an
empty string as the value of RS indicates that records are separated by one or more blank
lines. When RS is set to the empty string, each record always ends at the first blank line
encountered. The next record doesn’t start until the first nonblank line that follows. No
matter how many blank lines appear in a row, they all act as one record separator. (Blank
lines must be completely empty; lines that contain only whitespace do not count.)

You can achieve the same effect as ‘RS = ""’ by assigning the string "\n\n+" to RS. This
regexp matches the newline at the end of the record and one or more blank lines after the
record. In addition, a regular expression always matches the longest possible sequence when
there is a choice (see Section 3.7 [How Much Text Matches?], page 46). So the next record
doesn’t start until the first nonblank line that follows—no matter how many blank lines
appear in a row, they are considered one record separator.

There is an important difference between ‘RS = ""’ and ‘RS = "\n\n+"’. In the first case,
leading newlines in the input data file are ignored, and if a file ends without extra blank
lines after the last record, the final newline is removed from the record. In the second case,
this special processing is not done.

Now that the input is separated into records, the second step is to separate the fields
in the record. One way to do this is to divide each of the lines into fields in the normal
manner. This happens by default as the result of a special feature. When RS is set to the
empty string, and FS is set to a single character, the newline character always acts as a
field separator. This is in addition to whatever field separations result from FS.5

The original motivation for this special exception was probably to provide useful behavior
in the default case (i.e., FS is equal to " "). This feature can be a problem if you really
don’t want the newline character to separate fields, because there is no way to prevent
it. However, you can work around this by using the split() function to break up the
record manually (see Section 9.1.3 [String-Manipulation Functions], page 153). If you have
a single character field separator, you can work around the special feature in a different way,
by making FS into a regexp for that single character. For example, if the field separator is
a percent character, instead of ‘FS = "%"’, use ‘FS = "[%]"’.

Another way to separate fields is to put each field on a separate line: to do this, just
set the variable FS to the string "\n". (This single character separator matches a single
newline.) A practical example of a data file organized this way might be a mailing list, where
each entry is separated by blank lines. Consider a mailing list in a file named addresses,
which looks like this:

Jane Doe

123 Main Street

Anywhere, SE 12345-6789

5 When FS is the null string ("") or a regexp, this special feature of RS does not apply. It does apply to
the default field separator of a single space: ‘FS = " "’.

66 GAWK: Effective AWK Programming

John Smith

456 Tree-lined Avenue

Smallville, MW 98765-4321

...

A simple program to process this file is as follows:

addrs.awk --- simple mailing list program

Records are separated by blank lines.

Each line is one field.

BEGIN { RS = "" ; FS = "\n" }

{

print "Name is:", $1

print "Address is:", $2

print "City and State are:", $3

print ""

}

Running the program produces the following output:

$ awk -f addrs.awk addresses

a Name is: Jane Doe

a Address is: 123 Main Street

a City and State are: Anywhere, SE 12345-6789

a
a Name is: John Smith

a Address is: 456 Tree-lined Avenue

a City and State are: Smallville, MW 98765-4321

a
...

See Section 13.3.4 [Printing Mailing Labels], page 269, for a more realistic program that
deals with address lists. The following table summarizes how records are split, based on
the value of RS:

RS == "\n"

Records are separated by the newline character (‘\n’). In effect, every line in
the data file is a separate record, including blank lines. This is the default.

RS == any single character

Records are separated by each occurrence of the character. Multiple successive
occurrences delimit empty records.

RS == "" Records are separated by runs of blank lines. When FS is a single character, then
the newline character always serves as a field separator, in addition to whatever
value FS may have. Leading and trailing newlines in a file are ignored.

RS == regexp

Records are separated by occurrences of characters that match regexp. Leading
and trailing matches of regexp delimit empty records. (This is a gawk extension;
it is not specified by the POSIX standard.)

Chapter 4: Reading Input Files 67

In all cases, gawk sets RT to the input text that matched the value specified by RS. But if
the input file ended without any text that matches RS, then gawk sets RT to the null string.

4.9 Explicit Input with getline

So far we have been getting our input data from awk’s main input stream—either the
standard input (usually your terminal, sometimes the output from another program) or
from the files specified on the command line. The awk language has a special built-in
command called getline that can be used to read input under your explicit control.

The getline command is used in several different ways and should not be used by
beginners. The examples that follow the explanation of the getline command include
material that has not been covered yet. Therefore, come back and study the getline

command after you have reviewed the rest of this book and have a good knowledge of how
awk works.

The getline command returns one if it finds a record and zero if it encounters the end
of the file. If there is some error in getting a record, such as a file that cannot be opened,
then getline returns −1. In this case, gawk sets the variable ERRNO to a string describing
the error that occurred.

In the following examples, command stands for a string value that represents a shell
command.

NOTE: When --sandbox is specified (see Section 2.2 [Command-Line Options],
page 25), reading lines from files, pipes and coprocesses is disabled.

4.9.1 Using getline with No Arguments

The getline command can be used without arguments to read input from the current
input file. All it does in this case is read the next input record and split it up into fields.
This is useful if you’ve finished processing the current record, but want to do some special
processing on the next record right now. For example:

{

if ((t = index($0, "/*")) != 0) {

value of ‘tmp’ will be "" if t is 1

tmp = substr($0, 1, t - 1)

u = index(substr($0, t + 2), "*/")

offset = t + 2

while (u == 0) {

if (getline <= 0) {

m = "unexpected EOF or error"

m = (m ": " ERRNO)

print m > "/dev/stderr"

exit

}

u = index($0, "*/")

offset = 0

}

substr() expression will be "" if */

occurred at end of line

68 GAWK: Effective AWK Programming

$0 = tmp substr($0, offset + u + 2)

}

print $0

}

This awk program deletes C-style comments (‘/* ... */’) from the input. By replacing
the ‘print $0’ with other statements, you could perform more complicated processing on the
decommented input, such as searching for matches of a regular expression. (This program
has a subtle problem—it does not work if one comment ends and another begins on the
same line.)

This form of the getline command sets NF, NR, FNR, and the value of $0.

NOTE: The new value of $0 is used to test the patterns of any subsequent
rules. The original value of $0 that triggered the rule that executed getline

is lost. By contrast, the next statement reads a new record but immediately
begins processing it normally, starting with the first rule in the program. See
Section 7.4.8 [The next Statement], page 126.

4.9.2 Using getline into a Variable

You can use ‘getline var’ to read the next record from awk’s input into the variable var.
No other processing is done. For example, suppose the next line is a comment or a special
string, and you want to read it without triggering any rules. This form of getline allows you
to read that line and store it in a variable so that the main read-a-line-and-check-each-rule
loop of awk never sees it. The following example swaps every two lines of input:

{

if ((getline tmp) > 0) {

print tmp

print $0

} else

print $0

}

It takes the following list:

wan

tew

free

phore

and produces these results:

tew

wan

phore

free

The getline command used in this way sets only the variables NR and FNR (and of
course, var). The record is not split into fields, so the values of the fields (including $0)
and the value of NF do not change.

Chapter 4: Reading Input Files 69

4.9.3 Using getline from a File

Use ‘getline < file’ to read the next record from file. Here file is a string-valued expression
that specifies the file name. ‘< file’ is called a redirection because it directs input to come
from a different place. For example, the following program reads its input record from the
file secondary.input when it encounters a first field with a value equal to 10 in the current
input file:

{

if ($1 == 10) {

getline < "secondary.input"

print

} else

print

}

Because the main input stream is not used, the values of NR and FNR are not changed.
However, the record it reads is split into fields in the normal manner, so the values of $0
and the other fields are changed, resulting in a new value of NF.

According to POSIX, ‘getline < expression’ is ambiguous if expression contains un-
parenthesized operators other than ‘$’; for example, ‘getline < dir "/" file’ is ambiguous
because the concatenation operator is not parenthesized. You should write it as ‘getline
< (dir "/" file)’ if you want your program to be portable to all awk implementations.

4.9.4 Using getline into a Variable from a File

Use ‘getline var < file’ to read input from the file file, and put it in the variable var. As
above, file is a string-valued expression that specifies the file from which to read.

In this version of getline, none of the built-in variables are changed and the record is
not split into fields. The only variable changed is var.6 For example, the following program
copies all the input files to the output, except for records that say ‘@include filename’.
Such a record is replaced by the contents of the file filename:

{

if (NF == 2 && $1 == "@include") {

while ((getline line < $2) > 0)

print line

close($2)

} else

print

}

Note here how the name of the extra input file is not built into the program; it is taken
directly from the data, specifically from the second field on the ‘@include’ line.

The close() function is called to ensure that if two identical ‘@include’ lines appear
in the input, the entire specified file is included twice. See Section 5.8 [Closing Input and
Output Redirections], page 88.

One deficiency of this program is that it does not process nested ‘@include’ statements
(i.e., ‘@include’ statements in included files) the way a true macro preprocessor would. See

6 This is not quite true. RT could be changed if RS is a regular expression.

70 GAWK: Effective AWK Programming

Section 13.3.9 [An Easy Way to Use Library Functions], page 278, for a program that does
handle nested ‘@include’ statements.

4.9.5 Using getline from a Pipe

The output of a command can also be piped into getline, using ‘command | getline’. In
this case, the string command is run as a shell command and its output is piped into awk

to be used as input. This form of getline reads one record at a time from the pipe. For
example, the following program copies its input to its output, except for lines that begin
with ‘@execute’, which are replaced by the output produced by running the rest of the line
as a shell command:

{

if ($1 == "@execute") {

tmp = substr($0, 10) # Remove "@execute"

while ((tmp | getline) > 0)

print

close(tmp)

} else

print

}

The close() function is called to ensure that if two identical ‘@execute’ lines appear in
the input, the command is run for each one. Given the input:

foo

bar

baz

@execute who

bletch

the program might produce:

foo

bar

baz

arnold ttyv0 Jul 13 14:22

miriam ttyp0 Jul 13 14:23 (murphy:0)

bill ttyp1 Jul 13 14:23 (murphy:0)

bletch

Notice that this program ran the command who and printed the previous result. (If you try
this program yourself, you will of course get different results, depending upon who is logged
in on your system.)

This variation of getline splits the record into fields, sets the value of NF, and recom-
putes the value of $0. The values of NR and FNR are not changed.

According to POSIX, ‘expression | getline’ is ambiguous if expression contains un-
parenthesized operators other than ‘$’—for example, ‘"echo " "date" | getline’ is am-
biguous because the concatenation operator is not parenthesized. You should write it as
‘("echo " "date") | getline’ if you want your program to be portable to all awk imple-
mentations.

Chapter 4: Reading Input Files 71

NOTE: Unfortunately, gawk has not been consistent in its treatment of a
construct like ‘"echo " "date" | getline’. Most versions, including the cur-
rent version, treat it at as ‘("echo " "date") | getline’. (This how Brian
Kernighan’s awk behaves.) Some versions changed and treated it as ‘"echo "

("date" | getline)’. (This is how mawk behaves.) In short, always use explicit
parentheses, and then you won’t have to worry.

4.9.6 Using getline into a Variable from a Pipe

When you use ‘command | getline var’, the output of command is sent through a pipe to
getline and into the variable var. For example, the following program reads the current
date and time into the variable current_time, using the date utility, and then prints it:

BEGIN {

"date" | getline current_time

close("date")

print "Report printed on " current_time

}

In this version of getline, none of the built-in variables are changed and the record is
not split into fields.

4.9.7 Using getline from a Coprocess

Input into getline from a pipe is a one-way operation. The command that is started with
‘command | getline’ only sends data to your awk program.

On occasion, you might want to send data to another program for processing and then
read the results back. gawk allows you to start a coprocess, with which two-way communi-
cations are possible. This is done with the ‘|&’ operator. Typically, you write data to the
coprocess first and then read results back, as shown in the following:

print "some query" |& "db_server"

"db_server" |& getline

which sends a query to db_server and then reads the results.

The values of NR and FNR are not changed, because the main input stream is not used.
However, the record is split into fields in the normal manner, thus changing the values of
$0, of the other fields, and of NF.

Coprocesses are an advanced feature. They are discussed here only because this is the
section on getline. See Section 11.3 [Two-Way Communications with Another Process],
page 205, where coprocesses are discussed in more detail.

4.9.8 Using getline into a Variable from a Coprocess

When you use ‘command |& getline var’, the output from the coprocess command is sent
through a two-way pipe to getline and into the variable var.

In this version of getline, none of the built-in variables are changed and the record is
not split into fields. The only variable changed is var.

4.9.9 Points to Remember About getline

Here are some miscellaneous points about getline that you should bear in mind:

72 GAWK: Effective AWK Programming

• When getline changes the value of $0 and NF, awk does not automatically jump to the
start of the program and start testing the new record against every pattern. However,
the new record is tested against any subsequent rules.

• Many awk implementations limit the number of pipelines that an awk program may
have open to just one. In gawk, there is no such limit. You can open as many pipelines
(and coprocesses) as the underlying operating system permits.

• An interesting side effect occurs if you use getline without a redirection inside a BEGIN
rule. Because an unredirected getline reads from the command-line data files, the first
getline command causes awk to set the value of FILENAME. Normally, FILENAME does
not have a value inside BEGIN rules, because you have not yet started to process the
command-line data files. (See Section 7.1.4 [The BEGIN and END Special Patterns],
page 116, also see Section 7.5.2 [Built-in Variables That Convey Information], page 131.)

• Using FILENAME with getline (‘getline < FILENAME’) is likely to be a source for con-
fusion. awk opens a separate input stream from the current input file. However, by
not using a variable, $0 and NR are still updated. If you’re doing this, it’s probably by
accident, and you should reconsider what it is you’re trying to accomplish.

• Section 4.9.10 [Summary of getline Variants], page 72, presents a table summarizing
the getline variants and which variables they can affect. It is worth noting that those
variants which do not use redirection can cause FILENAME to be updated if they cause
awk to start reading a new input file.

• If the variable being assigned is an expression with side effects, different versions of
awk behave differently upon encountering end-of-file. Some versions don’t evaluate the
expression; many versions (including gawk) do. Here is an example, due to Duncan
Moore:

BEGIN {

system("echo 1 > f")

while ((getline a[++c] < "f") > 0) { }

print c

}

Here, the side effect is the ‘++c’. Is c incremented if end of file is encountered, before
the element in a is assigned?

gawk treats getline like a function call, and evaluates the expression ‘a[++c]’ before
attempting to read from f. Other versions of awk only evaluate the expression once
they know that there is a string value to be assigned. Caveat Emptor.

4.9.10 Summary of getline Variants

Table 4.1 summarizes the eight variants of getline, listing which built-in variables are set
by each one, and whether the variant is standard or a gawk extension.

Chapter 4: Reading Input Files 73

Variant Effect Standard / Extension
getline Sets $0, NF, FNR, and NR Standard
getline var Sets var, FNR, and NR Standard
getline < file Sets $0 and NF Standard
getline var < file Sets var Standard
command | getline Sets $0 and NF Standard
command | getline var Sets var Standard
command |& getline Sets $0 and NF Extension
command |& getline var Sets var Extension

Table 4.1: getline Variants and What They Set

4.10 Directories On The Command Line

According to the POSIX standard, files named on the awk command line must be text files.
It is a fatal error if they are not. Most versions of awk treat a directory on the command
line as a fatal error.

By default, gawk produces a warning for a directory on the command line, but otherwise
ignores it. If either of the --posix or --traditional options is given, then gawk reverts
to treating a directory on the command line as a fatal error.

Chapter 5: Printing Output 75

5 Printing Output

One of the most common programming actions is to print, or output, some or all of the
input. Use the print statement for simple output, and the printf statement for fancier
formatting. The print statement is not limited when computing which values to print.
However, with two exceptions, you cannot specify how to print them—how many columns,
whether to use exponential notation or not, and so on. (For the exceptions, see Section 5.3
[Output Separators], page 77, and Section 5.4 [Controlling Numeric Output with print],
page 77.) For printing with specifications, you need the printf statement (see Section 5.5
[Using printf Statements for Fancier Printing], page 78).

Besides basic and formatted printing, this chapter also covers I/O redirections to files
and pipes, introduces the special file names that gawk processes internally, and discusses
the close() built-in function.

5.1 The print Statement

The print statement is used for producing output with simple, standardized formatting.
Specify only the strings or numbers to print, in a list separated by commas. They are
output, separated by single spaces, followed by a newline. The statement looks like this:

print item1, item2, ...

The entire list of items may be optionally enclosed in parentheses. The parentheses are
necessary if any of the item expressions uses the ‘>’ relational operator; otherwise it could
be confused with an output redirection (see Section 5.6 [Redirecting Output of print and
printf], page 83).

The items to print can be constant strings or numbers, fields of the current record (such
as $1), variables, or any awk expression. Numeric values are converted to strings and then
printed.

The simple statement ‘print’ with no items is equivalent to ‘print $0’: it prints the
entire current record. To print a blank line, use ‘print ""’, where "" is the empty string.
To print a fixed piece of text, use a string constant, such as "Don’t Panic", as one item.
If you forget to use the double-quote characters, your text is taken as an awk expression,
and you will probably get an error. Keep in mind that a space is printed between any two
items.

5.2 print Statement Examples

Each print statement makes at least one line of output. However, it isn’t limited to only
one line. If an item value is a string containing a newline, the newline is output along with
the rest of the string. A single print statement can make any number of lines this way.

The following is an example of printing a string that contains embedded newlines (the
‘\n’ is an escape sequence, used to represent the newline character; see Section 3.2 [Escape
Sequences], page 38):

$ awk ’BEGIN { print "line one\nline two\nline three" }’

a line one

a line two

a line three

76 GAWK: Effective AWK Programming

The next example, which is run on the inventory-shipped file, prints the first two fields
of each input record, with a space between them:

$ awk ’{ print $1, $2 }’ inventory-shipped

a Jan 13

a Feb 15

a Mar 15

...

A common mistake in using the print statement is to omit the comma between two
items. This often has the effect of making the items run together in the output, with
no space. The reason for this is that juxtaposing two string expressions in awk means to
concatenate them. Here is the same program, without the comma:

$ awk ’{ print $1 $2 }’ inventory-shipped

a Jan13

a Feb15

a Mar15

...

To someone unfamiliar with the inventory-shipped file, neither example’s output
makes much sense. A heading line at the beginning would make it clearer. Let’s add
some headings to our table of months ($1) and green crates shipped ($2). We do this using
the BEGIN pattern (see Section 7.1.4 [The BEGIN and END Special Patterns], page 116) so
that the headings are only printed once:

awk ’BEGIN { print "Month Crates"

print "----- ------" }

{ print $1, $2 }’ inventory-shipped

When run, the program prints the following:

Month Crates

----- ------

Jan 13

Feb 15

Mar 15

...

The only problem, however, is that the headings and the table data don’t line up! We can
fix this by printing some spaces between the two fields:

awk ’BEGIN { print "Month Crates"

print "----- ------" }

{ print $1, " ", $2 }’ inventory-shipped

Lining up columns this way can get pretty complicated when there are many columns
to fix. Counting spaces for two or three columns is simple, but any more than this can take
up a lot of time. This is why the printf statement was created (see Section 5.5 [Using
printf Statements for Fancier Printing], page 78); one of its specialties is lining up columns
of data.

NOTE: You can continue either a print or printf statement simply by putting
a newline after any comma (see Section 1.6 [awk Statements Versus Lines],
page 21).

Chapter 5: Printing Output 77

5.3 Output Separators

As mentioned previously, a print statement contains a list of items separated by commas.
In the output, the items are normally separated by single spaces. However, this doesn’t
need to be the case; a single space is simply the default. Any string of characters may be
used as the output field separator by setting the built-in variable OFS. The initial value of
this variable is the string " "—that is, a single space.

The output from an entire print statement is called an output record. Each print

statement outputs one output record, and then outputs a string called the output record
separator (or ORS). The initial value of ORS is the string "\n"; i.e., a newline character.
Thus, each print statement normally makes a separate line.

In order to change how output fields and records are separated, assign new values to the
variables OFS and ORS. The usual place to do this is in the BEGIN rule (see Section 7.1.4
[The BEGIN and END Special Patterns], page 116), so that it happens before any input is
processed. It can also be done with assignments on the command line, before the names
of the input files, or using the -v command-line option (see Section 2.2 [Command-Line
Options], page 25). The following example prints the first and second fields of each input
record, separated by a semicolon, with a blank line added after each newline:

$ awk ’BEGIN { OFS = ";"; ORS = "\n\n" }

> { print $1, $2 }’ BBS-list

a aardvark;555-5553

a
a alpo-net;555-3412

a
a barfly;555-7685

...

If the value of ORS does not contain a newline, the program’s output runs together on a
single line.

5.4 Controlling Numeric Output with print

When printing numeric values with the print statement, awk internally converts the number
to a string of characters and prints that string. awk uses the sprintf() function to do this
conversion (see Section 9.1.3 [String-Manipulation Functions], page 153). For now, it suffices
to say that the sprintf() function accepts a format specification that tells it how to format
numbers (or strings), and that there are a number of different ways in which numbers can
be formatted. The different format specifications are discussed more fully in Section 5.5.2
[Format-Control Letters], page 78.

The built-in variable OFMT contains the default format specification that print uses with
sprintf() when it wants to convert a number to a string for printing. The default value
of OFMT is "%.6g". The way print prints numbers can be changed by supplying different
format specifications as the value of OFMT, as shown in the following example:

$ awk ’BEGIN {

> OFMT = "%.0f" # print numbers as integers (rounds)

> print 17.23, 17.54 }’

a 17 18

78 GAWK: Effective AWK Programming

According to the POSIX standard, awk’s behavior is undefined if OFMT contains anything
but a floating-point conversion specification.

5.5 Using printf Statements for Fancier Printing

For more precise control over the output format than what is provided by print, use
printf. With printf you can specify the width to use for each item, as well as various
formatting choices for numbers (such as what output base to use, whether to print an
exponent, whether to print a sign, and how many digits to print after the decimal point).
You do this by supplying a string, called the format string, that controls how and where to
print the other arguments.

5.5.1 Introduction to the printf Statement

A simple printf statement looks like this:

printf format, item1, item2, ...

The entire list of arguments may optionally be enclosed in parentheses. The parentheses
are necessary if any of the item expressions use the ‘>’ relational operator; otherwise, it can
be confused with an output redirection (see Section 5.6 [Redirecting Output of print and
printf], page 83).

The difference between printf and print is the format argument. This is an expression
whose value is taken as a string; it specifies how to output each of the other arguments. It
is called the format string.

The format string is very similar to that in the ISO C library function printf(). Most
of format is text to output verbatim. Scattered among this text are format specifiers—one
per item. Each format specifier says to output the next item in the argument list at that
place in the format.

The printf statement does not automatically append a newline to its output. It outputs
only what the format string specifies. So if a newline is needed, you must include one in
the format string. The output separator variables OFS and ORS have no effect on printf

statements. For example:

$ awk ’BEGIN {

> ORS = "\nOUCH!\n"; OFS = "+"

> msg = "Dont Panic!"

> printf "%s\n", msg

> }’

a Dont Panic!

Here, neither the ‘+’ nor the ‘OUCH’ appear in the output message.

5.5.2 Format-Control Letters

A format specifier starts with the character ‘%’ and ends with a format-control letter—it
tells the printf statement how to output one item. The format-control letter specifies what
kind of value to print. The rest of the format specifier is made up of optional modifiers that
control how to print the value, such as the field width. Here is a list of the format-control
letters:

Chapter 5: Printing Output 79

%c Print a number as an ASCII character; thus, ‘printf "%c", 65’ outputs the
letter ‘A’. The output for a string value is the first character of the string.

NOTE: The POSIX standard says the first character of a string is
printed. In locales with multibyte characters, gawk attempts to con-
vert the leading bytes of the string into a valid wide character and
then to print the multibyte encoding of that character. Similarly,
when printing a numeric value, gawk allows the value to be within
the numeric range of values that can be held in a wide character.

Other awk versions generally restrict themselves to printing the first
byte of a string or to numeric values within the range of a single
byte (0–255).

%d, %i Print a decimal integer. The two control letters are equivalent. (The ‘%i’
specification is for compatibility with ISO C.)

%e, %E Print a number in scientific (exponential) notation; for example:

printf "%4.3e\n", 1950

prints ‘1.950e+03’, with a total of four significant figures, three of which follow
the decimal point. (The ‘4.3’ represents two modifiers, discussed in the next
subsection.) ‘%E’ uses ‘E’ instead of ‘e’ in the output.

%f Print a number in floating-point notation. For example:

printf "%4.3f", 1950

prints ‘1950.000’, with a total of four significant figures, three of which follow
the decimal point. (The ‘4.3’ represents two modifiers, discussed in the next
subsection.)

On systems supporting IEEE 754 floating point format, values representing
negative infinity are formatted as ‘-inf’ or ‘-infinity’, and positive infinity
as ‘inf’ and ‘infinity’. The special “not a number” value formats as ‘-nan’
or ‘nan’.

%F Like ‘%f’ but the infinity and “not a number” values are spelled using uppercase
letters.

The ‘%F’ format is a POSIX extension to ISO C; not all systems support it. On
those that don’t, gawk uses ‘%f’ instead.

%g, %G Print a number in either scientific notation or in floating-point notation, which-
ever uses fewer characters; if the result is printed in scientific notation, ‘%G’ uses
‘E’ instead of ‘e’.

%o Print an unsigned octal integer (see Section 6.1.1.2 [Octal and Hexadecimal
Numbers], page 91).

%s Print a string.

%u Print an unsigned decimal integer. (This format is of marginal use, because
all numbers in awk are floating-point; it is provided primarily for compatibility
with C.)

80 GAWK: Effective AWK Programming

%x, %X Print an unsigned hexadecimal integer; ‘%X’ uses the letters ‘A’ through ‘F’
instead of ‘a’ through ‘f’ (see Section 6.1.1.2 [Octal and Hexadecimal Numbers],
page 91).

%% Print a single ‘%’. This does not consume an argument and it ignores any
modifiers.

NOTE: When using the integer format-control letters for values that are outside
the range of the widest C integer type, gawk switches to the ‘%g’ format specifier.
If --lint is provided on the command line (see Section 2.2 [Command-Line
Options], page 25), gawk warns about this. Other versions of awk may print
invalid values or do something else entirely.

5.5.3 Modifiers for printf Formats

A format specification can also include modifiers that can control how much of the item’s
value is printed, as well as how much space it gets. The modifiers come between the ‘%’ and
the format-control letter. We will use the bullet symbol “•” in the following examples to
represent spaces in the output. Here are the possible modifiers, in the order in which they
may appear:

N$ An integer constant followed by a ‘$’ is a positional specifier. Normally, format
specifications are applied to arguments in the order given in the format string.
With a positional specifier, the format specification is applied to a specific
argument, instead of what would be the next argument in the list. Positional
specifiers begin counting with one. Thus:

printf "%s %s\n", "don’t", "panic"

printf "%2$s %1$s\n", "panic", "don’t"

prints the famous friendly message twice.

At first glance, this feature doesn’t seem to be of much use. It is in fact
a gawk extension, intended for use in translating messages at runtime. See
Section 10.4.2 [Rearranging printf Arguments], page 193, which describes how
and why to use positional specifiers. For now, we will not use them.

- The minus sign, used before the width modifier (see later on in this list), says
to left-justify the argument within its specified width. Normally, the argument
is printed right-justified in the specified width. Thus:

printf "%-4s", "foo"

prints ‘foo•’.
space For numeric conversions, prefix positive values with a space and negative values

with a minus sign.

+ The plus sign, used before the width modifier (see later on in this list), says
to always supply a sign for numeric conversions, even if the data to format is
positive. The ‘+’ overrides the space modifier.

Use an “alternate form” for certain control letters. For ‘%o’, supply a leading
zero. For ‘%x’ and ‘%X’, supply a leading ‘0x’ or ‘0X’ for a nonzero result. For
‘%e’, ‘%E’, ‘%f’, and ‘%F’, the result always contains a decimal point. For ‘%g’
and ‘%G’, trailing zeros are not removed from the result.

Chapter 5: Printing Output 81

0 A leading ‘0’ (zero) acts as a flag that indicates that output should be padded
with zeros instead of spaces. This applies only to the numeric output formats.
This flag only has an effect when the field width is wider than the value to
print.

’ A single quote or apostrophe character is a POSIX extension to ISO C. It
indicates that the integer part of a floating point value, or the entire part of an
integer decimal value, should have a thousands-separator character in it. This
only works in locales that support such characters. For example:

$ cat thousands.awk Show source program
a BEGIN { printf "%’d\n", 1234567 }

$ LC_ALL=C gawk -f thousands.awk

a 1234567 Results in "C" locale
$ LC_ALL=en_US.UTF-8 gawk -f thousands.awk

a 1,234,567 Results in US English UTF locale

For more information about locales and internationalization issues, see
Section 6.6 [Where You Are Makes A Difference], page 112.

NOTE: The ‘’’ flag is a nice feature, but its use complicates things:
it becomes difficult to use it in command-line programs. For in-
formation on appropriate quoting tricks, see Section 1.1.6 [Shell-
Quoting Issues], page 15.

width This is a number specifying the desired minimum width of a field. Inserting
any number between the ‘%’ sign and the format-control character forces the
field to expand to this width. The default way to do this is to pad with spaces
on the left. For example:

printf "%4s", "foo"

prints ‘•foo’.
The value of width is a minimum width, not a maximum. If the item value
requires more than width characters, it can be as wide as necessary. Thus, the
following:

printf "%4s", "foobar"

prints ‘foobar’.

Preceding the width with a minus sign causes the output to be padded with
spaces on the right, instead of on the left.

.prec A period followed by an integer constant specifies the precision to use when
printing. The meaning of the precision varies by control letter:

%d, %i, %o, %u, %x, %X
Minimum number of digits to print.

%e, %E, %f, %F
Number of digits to the right of the decimal point.

%g, %G Maximum number of significant digits.

%s Maximum number of characters from the string that should print.

Thus, the following:

82 GAWK: Effective AWK Programming

printf "%.4s", "foobar"

prints ‘foob’.

The C library printf’s dynamic width and prec capability (for example, "%*.*s") is
supported. Instead of supplying explicit width and/or prec values in the format string, they
are passed in the argument list. For example:

w = 5

p = 3

s = "abcdefg"

printf "%*.*s\n", w, p, s

is exactly equivalent to:

s = "abcdefg"

printf "%5.3s\n", s

Both programs output ‘••abc’. Earlier versions of awk did not support this capability. If
you must use such a version, you may simulate this feature by using concatenation to build
up the format string, like so:

w = 5

p = 3

s = "abcdefg"

printf "%" w "." p "s\n", s

This is not particularly easy to read but it does work.

C programmers may be used to supplying additional ‘l’, ‘L’, and ‘h’ modifiers in printf

format strings. These are not valid in awk. Most awk implementations silently ignore them.
If --lint is provided on the command line (see Section 2.2 [Command-Line Options],
page 25), gawk warns about their use. If --posix is supplied, their use is a fatal error.

5.5.4 Examples Using printf

The following simple example shows how to use printf to make an aligned table:

awk ’{ printf "%-10s %s\n", $1, $2 }’ BBS-list

This command prints the names of the bulletin boards ($1) in the file BBS-list as a string
of 10 characters that are left-justified. It also prints the phone numbers ($2) next on the
line. This produces an aligned two-column table of names and phone numbers, as shown
here:

$ awk ’{ printf "%-10s %s\n", $1, $2 }’ BBS-list

a aardvark 555-5553

a alpo-net 555-3412

a barfly 555-7685

a bites 555-1675

a camelot 555-0542

a core 555-2912

a fooey 555-1234

a foot 555-6699

a macfoo 555-6480

a sdace 555-3430

a sabafoo 555-2127

Chapter 5: Printing Output 83

In this case, the phone numbers had to be printed as strings because the numbers are
separated by a dash. Printing the phone numbers as numbers would have produced just
the first three digits: ‘555’. This would have been pretty confusing.

It wasn’t necessary to specify a width for the phone numbers because they are last on
their lines. They don’t need to have spaces after them.

The table could be made to look even nicer by adding headings to the tops of the
columns. This is done using the BEGIN pattern (see Section 7.1.4 [The BEGIN and END

Special Patterns], page 116) so that the headers are only printed once, at the beginning of
the awk program:

awk ’BEGIN { print "Name Number"

print "---- ------" }

{ printf "%-10s %s\n", $1, $2 }’ BBS-list

The above example mixes print and printf statements in the same program. Using
just printf statements can produce the same results:

awk ’BEGIN { printf "%-10s %s\n", "Name", "Number"

printf "%-10s %s\n", "----", "------" }

{ printf "%-10s %s\n", $1, $2 }’ BBS-list

Printing each column heading with the same format specification used for the column ele-
ments ensures that the headings are aligned just like the columns.

The fact that the same format specification is used three times can be emphasized by
storing it in a variable, like this:

awk ’BEGIN { format = "%-10s %s\n"

printf format, "Name", "Number"

printf format, "----", "------" }

{ printf format, $1, $2 }’ BBS-list

At this point, it would be a worthwhile exercise to use the printf statement to line up
the headings and table data for the inventory-shipped example that was covered earlier
in the section on the print statement (see Section 5.1 [The print Statement], page 75).

5.6 Redirecting Output of print and printf

So far, the output from print and printf has gone to the standard output, usually the
screen. Both print and printf can also send their output to other places. This is called
redirection.

NOTE: When --sandbox is specified (see Section 2.2 [Command-Line Options],
page 25), redirecting output to files and pipes is disabled.

A redirection appears after the print or printf statement. Redirections in awk are
written just like redirections in shell commands, except that they are written inside the awk
program.

There are four forms of output redirection: output to a file, output appended to a file,
output through a pipe to another command, and output to a coprocess. They are all shown
for the print statement, but they work identically for printf:

84 GAWK: Effective AWK Programming

print items > output-file

This redirection prints the items into the output file named output-file. The
file name output-file can be any expression. Its value is changed to a string and
then used as a file name (see Chapter 6 [Expressions], page 91).

When this type of redirection is used, the output-file is erased before the first
output is written to it. Subsequent writes to the same output-file do not erase
output-file, but append to it. (This is different from how you use redirections
in shell scripts.) If output-file does not exist, it is created. For example, here is
how an awk program can write a list of BBS names to one file named name-list,
and a list of phone numbers to another file named phone-list:

$ awk ’{ print $2 > "phone-list"

> print $1 > "name-list" }’ BBS-list

$ cat phone-list

a 555-5553

a 555-3412

...

$ cat name-list

a aardvark

a alpo-net

...

Each output file contains one name or number per line.

print items >> output-file

This redirection prints the items into the pre-existing output file named output-
file. The difference between this and the single-‘>’ redirection is that the old
contents (if any) of output-file are not erased. Instead, the awk output is ap-
pended to the file. If output-file does not exist, then it is created.

print items | command

It is possible to send output to another program through a pipe instead of into
a file. This redirection opens a pipe to command, and writes the values of items
through this pipe to another process created to execute command.

The redirection argument command is actually an awk expression. Its value is
converted to a string whose contents give the shell command to be run. For
example, the following produces two files, one unsorted list of BBS names, and
one list sorted in reverse alphabetical order:

awk ’{ print $1 > "names.unsorted"

command = "sort -r > names.sorted"

print $1 | command }’ BBS-list

The unsorted list is written with an ordinary redirection, while the sorted list
is written by piping through the sort utility.

The next example uses redirection to mail a message to the mailing list
‘bug-system’. This might be useful when trouble is encountered in an awk

script run periodically for system maintenance:

report = "mail bug-system"

print "Awk script failed:", $0 | report

Chapter 5: Printing Output 85

m = ("at record number " FNR " of " FILENAME)

print m | report

close(report)

The message is built using string concatenation and saved in the variable m.
It’s then sent down the pipeline to the mail program. (The parentheses group
the items to concatenate—see Section 6.2.2 [String Concatenation], page 98.)

The close() function is called here because it’s a good idea to close the pipe
as soon as all the intended output has been sent to it. See Section 5.8 [Closing
Input and Output Redirections], page 88, for more information.

This example also illustrates the use of a variable to represent a file or
command—it is not necessary to always use a string constant. Using a variable
is generally a good idea, because (if you mean to refer to that same file or
command) awk requires that the string value be spelled identically every time.

print items |& command

This redirection prints the items to the input of command. The difference
between this and the single-‘|’ redirection is that the output from command
can be read with getline. Thus command is a coprocess, which works together
with, but subsidiary to, the awk program.

This feature is a gawk extension, and is not available in POSIX awk. See
Section 4.9.7 [Using getline from a Coprocess], page 71, for a brief discussion.
See Section 11.3 [Two-Way Communications with Another Process], page 205,
for a more complete discussion.

Redirecting output using ‘>’, ‘>>’, ‘|’, or ‘|&’ asks the system to open a file, pipe, or
coprocess only if the particular file or command you specify has not already been written
to by your program or if it has been closed since it was last written to.

It is a common error to use ‘>’ redirection for the first print to a file, and then to use
‘>>’ for subsequent output:

clear the file

print "Don’t panic" > "guide.txt"

...

append

print "Avoid improbability generators" >> "guide.txt"

This is indeed how redirections must be used from the shell. But in awk, it isn’t necessary.
In this kind of case, a program should use ‘>’ for all the print statements, since the output
file is only opened once. (It happens that if you mix ‘>’ and ‘>>’ that output is produced in
the expected order. However, mixing the operators for the same file is definitely poor style,
and is confusing to readers of your program.)

As mentioned earlier (see Section 4.9.9 [Points to Remember About getline], page 71),
many older awk implementations limit the number of pipelines that an awk program may
have open to just one! In gawk, there is no such limit. gawk allows a program to open as
many pipelines as the underlying operating system permits.

Advanced Notes: Piping into sh

A particularly powerful way to use redirection is to build command lines and pipe them
into the shell, sh. For example, suppose you have a list of files brought over from a system

86 GAWK: Effective AWK Programming

where all the file names are stored in uppercase, and you wish to rename them to have
names in all lowercase. The following program is both simple and efficient:

{ printf("mv %s %s\n", $0, tolower($0)) | "sh" }

END { close("sh") }

The tolower() function returns its argument string with all uppercase characters con-
verted to lowercase (see Section 9.1.3 [String-Manipulation Functions], page 153). The
program builds up a list of command lines, using the mv utility to rename the files. It then
sends the list to the shell for execution.

5.7 Special File Names in gawk

gawk provides a number of special file names that it interprets internally. These file names
provide access to standard file descriptors and TCP/IP networking.

5.7.1 Special Files for Standard Descriptors

Running programs conventionally have three input and output streams already available to
them for reading and writing. These are known as the standard input, standard output,
and standard error output. These streams are, by default, connected to your keyboard and
screen, but they are often redirected with the shell, via the ‘<’, ‘<<’, ‘>’, ‘>>’, ‘>&’, and ‘|’
operators. Standard error is typically used for writing error messages; the reason there are
two separate streams, standard output and standard error, is so that they can be redirected
separately.

In other implementations of awk, the only way to write an error message to standard
error in an awk program is as follows:

print "Serious error detected!" | "cat 1>&2"

This works by opening a pipeline to a shell command that can access the standard error
stream that it inherits from the awk process. This is far from elegant, and it is also inefficient,
because it requires a separate process. So people writing awk programs often don’t do this.
Instead, they send the error messages to the screen, like this:

print "Serious error detected!" > "/dev/tty"

(/dev/tty is a special file supplied by the operating system that is connected to your
keyboard and screen. It represents the “terminal,”1 which on modern systems is a keyboard
and screen, not a serial console.) This usually has the same effect but not always: although
the standard error stream is usually the screen, it can be redirected; when that happens,
writing to the screen is not correct. In fact, if awk is run from a background job, it may not
have a terminal at all. Then opening /dev/tty fails.

gawk provides special file names for accessing the three standard streams. (c.e.). It also
provides syntax for accessing any other inherited open files. If the file name matches one of
these special names when gawk redirects input or output, then it directly uses the stream
that the file name stands for. These special file names work for all operating systems that
gawk has been ported to, not just those that are POSIX-compliant:

/dev/stdin

The standard input (file descriptor 0).

1 The “tty” in /dev/tty stands for “Teletype,” a serial terminal.

Chapter 5: Printing Output 87

/dev/stdout

The standard output (file descriptor 1).

/dev/stderr

The standard error output (file descriptor 2).

/dev/fd/N

The file associated with file descriptor N. Such a file must be opened by the
program initiating the awk execution (typically the shell). Unless special pains
are taken in the shell from which gawk is invoked, only descriptors 0, 1, and 2
are available.

The file names /dev/stdin, /dev/stdout, and /dev/stderr are aliases for /dev/fd/0,
/dev/fd/1, and /dev/fd/2, respectively. However, they are more self-explanatory. The
proper way to write an error message in a gawk program is to use /dev/stderr, like this:

print "Serious error detected!" > "/dev/stderr"

Note the use of quotes around the file name. Like any other redirection, the value must
be a string. It is a common error to omit the quotes, which leads to confusing results.

Finally, using the close() function on a file name of the form "/dev/fd/N", for file
descriptor numbers above two, will actually close the given file descriptor.

The /dev/stdin, /dev/stdout, and /dev/stderr special files are also recognized inter-
nally by several other versions of awk.

5.7.2 Special Files for Network Communications

gawk programs can open a two-way TCP/IP connection, acting as either a client or a server.
This is done using a special file name of the form:

/net-type/protocol/local-port/remote-host/remote-port

The net-type is one of ‘inet’, ‘inet4’ or ‘inet6’. The protocol is one of ‘tcp’ or ‘udp’,
and the other fields represent the other essential pieces of information for making a network-
ing connection. These file names are used with the ‘|&’ operator for communicating with a
coprocess (see Section 11.3 [Two-Way Communications with Another Process], page 205).
This is an advanced feature, mentioned here only for completeness. Full discussion is delayed
until Section 11.4 [Using gawk for Network Programming], page 207.

5.7.3 Special File Name Caveats

Here is a list of things to bear in mind when using the special file names that gawk provides:

• Recognition of these special file names is disabled if gawk is in compatibility mode (see
Section 2.2 [Command-Line Options], page 25).

• gawk always interprets these special file names. For example, using ‘/dev/fd/4’ for
output actually writes on file descriptor 4, and not on a new file descriptor that is
dup()’ed from file descriptor 4. Most of the time this does not matter; however, it is
important to not close any of the files related to file descriptors 0, 1, and 2. Doing so
results in unpredictable behavior.

88 GAWK: Effective AWK Programming

5.8 Closing Input and Output Redirections

If the same file name or the same shell command is used with getline more than once
during the execution of an awk program (see Section 4.9 [Explicit Input with getline],
page 67), the file is opened (or the command is executed) the first time only. At that time,
the first record of input is read from that file or command. The next time the same file or
command is used with getline, another record is read from it, and so on.

Similarly, when a file or pipe is opened for output, awk remembers the file name or com-
mand associated with it, and subsequent writes to the same file or command are appended
to the previous writes. The file or pipe stays open until awk exits.

This implies that special steps are necessary in order to read the same file again from the
beginning, or to rerun a shell command (rather than reading more output from the same
command). The close() function makes these things possible:

close(filename)

or:

close(command)

The argument filename or command can be any expression. Its value must exactly match
the string that was used to open the file or start the command (spaces and other “irrelevant”
characters included). For example, if you open a pipe with this:

"sort -r names" | getline foo

then you must close it with this:

close("sort -r names")

Once this function call is executed, the next getline from that file or command, or the
next print or printf to that file or command, reopens the file or reruns the command.
Because the expression that you use to close a file or pipeline must exactly match the
expression used to open the file or run the command, it is good practice to use a variable
to store the file name or command. The previous example becomes the following:

sortcom = "sort -r names"

sortcom | getline foo

...

close(sortcom)

This helps avoid hard-to-find typographical errors in your awk programs. Here are some of
the reasons for closing an output file:

• To write a file and read it back later on in the same awk program. Close the file after
writing it, then begin reading it with getline.

• To write numerous files, successively, in the same awk program. If the files aren’t closed,
eventually awk may exceed a system limit on the number of open files in one process.
It is best to close each one when the program has finished writing it.

• To make a command finish. When output is redirected through a pipe, the command
reading the pipe normally continues to try to read input as long as the pipe is open.
Often this means the command cannot really do its work until the pipe is closed. For
example, if output is redirected to the mail program, the message is not actually sent
until the pipe is closed.

Chapter 5: Printing Output 89

• To run the same program a second time, with the same arguments. This is not the
same thing as giving more input to the first run!

For example, suppose a program pipes output to the mail program. If it outputs
several lines redirected to this pipe without closing it, they make a single message of
several lines. By contrast, if the program closes the pipe after each line of output, then
each line makes a separate message.

If you use more files than the system allows you to have open, gawk attempts to multiplex
the available open files among your data files. gawk’s ability to do this depends upon the
facilities of your operating system, so it may not always work. It is therefore both good
practice and good portability advice to always use close() on your files when you are done
with them. In fact, if you are using a lot of pipes, it is essential that you close commands
when done. For example, consider something like this:

{

...

command = ("grep " $1 " /some/file | my_prog -q " $3)

while ((command | getline) > 0) {

process output of command

}

need close(command) here

}

This example creates a new pipeline based on data in each record. Without the call to
close() indicated in the comment, awk creates child processes to run the commands, until
it eventually runs out of file descriptors for more pipelines.

Even though each command has finished (as indicated by the end-of-file return status
from getline), the child process is not terminated;2 more importantly, the file descriptor
for the pipe is not closed and released until close() is called or awk exits.

close() will silently do nothing if given an argument that does not represent a file, pipe
or coprocess that was opened with a redirection.

Note also that ‘close(FILENAME)’ has no “magic” effects on the implicit loop that reads
through the files named on the command line. It is, more likely, a close of a file that was
never opened, so awk silently does nothing.

When using the ‘|&’ operator to communicate with a coprocess, it is occasionally useful
to be able to close one end of the two-way pipe without closing the other. This is done
by supplying a second argument to close(). As in any other call to close(), the first
argument is the name of the command or special file used to start the coprocess. The
second argument should be a string, with either of the values "to" or "from". Case does
not matter. As this is an advanced feature, a more complete discussion is delayed until
Section 11.3 [Two-Way Communications with Another Process], page 205, which discusses
it in more detail and gives an example.

Advanced Notes: Using close()’s Return Value

In many versions of Unix awk, the close() function is actually a statement. It is a syntax
error to try and use the return value from close():

2 The technical terminology is rather morbid. The finished child is called a “zombie,” and cleaning up
after it is referred to as “reaping.”

90 GAWK: Effective AWK Programming

command = "..."

command | getline info

retval = close(command) # syntax error in many Unix awks

gawk treats close() as a function. The return value is −1 if the argument names
something that was never opened with a redirection, or if there is a system problem closing
the file or process. In these cases, gawk sets the built-in variable ERRNO to a string describing
the problem.

In gawk, when closing a pipe or coprocess (input or output), the return value is the exit
status of the command.3 Otherwise, it is the return value from the system’s close() or
fclose() C functions when closing input or output files, respectively. This value is zero if
the close succeeds, or −1 if it fails.

The POSIX standard is very vague; it says that close() returns zero on success and
nonzero otherwise. In general, different implementations vary in what they report when
closing pipes; thus the return value cannot be used portably. In POSIX mode (see
Section 2.2 [Command-Line Options], page 25), gawk just returns zero when closing a pipe.

3 This is a full 16-bit value as returned by the wait() system call. See the system manual pages for
information on how to decode this value.

Chapter 6: Expressions 91

6 Expressions

Expressions are the basic building blocks of awk patterns and actions. An expression eval-
uates to a value that you can print, test, or pass to a function. Additionally, an expression
can assign a new value to a variable or a field by using an assignment operator.

An expression can serve as a pattern or action statement on its own. Most other kinds
of statements contain one or more expressions that specify the data on which to operate.
As in other languages, expressions in awk include variables, array references, constants, and
function calls, as well as combinations of these with various operators.

6.1 Constants, Variables and Conversions

Expressions are built up from values and the operations performed upon them. This section
describes the elementary objects which provide the values used in expressions.

6.1.1 Constant Expressions

The simplest type of expression is the constant, which always has the same value. There
are three types of constants: numeric, string, and regular expression.

Each is used in the appropriate context when you need a data value that isn’t going to
change. Numeric constants can have different forms, but are stored identically internally.

6.1.1.1 Numeric and String Constants

A numeric constant stands for a number. This number can be an integer, a decimal fraction,
or a number in scientific (exponential) notation.1 Here are some examples of numeric
constants that all have the same value:

105

1.05e+2

1050e-1

A string constant consists of a sequence of characters enclosed in double-quotation marks.
For example:

"parrot"

represents the string whose contents are ‘parrot’. Strings in gawk can be of any length,
and they can contain any of the possible eight-bit ASCII characters including ASCII nul
(character code zero). Other awk implementations may have difficulty with some character
codes.

6.1.1.2 Octal and Hexadecimal Numbers

In awk, all numbers are in decimal; i.e., base 10. Many other programming languages allow
you to specify numbers in other bases, often octal (base 8) and hexadecimal (base 16). In
octal, the numbers go 0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, etc. Just as ‘11’, in decimal, is 1 times
10 plus 1, so ‘11’, in octal, is 1 times 8, plus 1. This equals 9 in decimal. In hexadecimal,
there are 16 digits. Since the everyday decimal number system only has ten digits (‘0’–‘9’),
the letters ‘a’ through ‘f’ are used to represent the rest. (Case in the letters is usually

1 The internal representation of all numbers, including integers, uses double precision floating-point num-
bers. On most modern systems, these are in IEEE 754 standard format.

92 GAWK: Effective AWK Programming

irrelevant; hexadecimal ‘a’ and ‘A’ have the same value.) Thus, ‘11’, in hexadecimal, is 1
times 16 plus 1, which equals 17 in decimal.

Just by looking at plain ‘11’, you can’t tell what base it’s in. So, in C, C++, and other
languages derived from C, there is a special notation to signify the base. Octal numbers
start with a leading ‘0’, and hexadecimal numbers start with a leading ‘0x’ or ‘0X’:

11 Decimal value 11.

011 Octal 11, decimal value 9.

0x11 Hexadecimal 11, decimal value 17.

This example shows the difference:

$ gawk ’BEGIN { printf "%d, %d, %d\n", 011, 11, 0x11 }’

a 9, 11, 17

Being able to use octal and hexadecimal constants in your programs is most useful
when working with data that cannot be represented conveniently as characters or as regular
numbers, such as binary data of various sorts.

gawk allows the use of octal and hexadecimal constants in your program text. However,
such numbers in the input data are not treated differently; doing so by default would break
old programs. (If you really need to do this, use the --non-decimal-data command-
line option; see Section 11.1 [Allowing Nondecimal Input Data], page 199.) If you have
octal or hexadecimal data, you can use the strtonum() function (see Section 9.1.3 [String-
Manipulation Functions], page 153) to convert the data into a number. Most of the time,
you will want to use octal or hexadecimal constants when working with the built-in bit
manipulation functions; see Section 9.1.6 [Bit-Manipulation Functions], page 172, for more
information.

Unlike some early C implementations, ‘8’ and ‘9’ are not valid in octal constants; e.g.,
gawk treats ‘018’ as decimal 18:

$ gawk ’BEGIN { print "021 is", 021 ; print 018 }’

a 021 is 17

a 18

Octal and hexadecimal source code constants are a gawk extension. If gawk is in com-
patibility mode (see Section 2.2 [Command-Line Options], page 25), they are not available.

Advanced Notes: A Constant’s Base Does Not Affect Its Value

Once a numeric constant has been converted internally into a number, gawk no longer
remembers what the original form of the constant was; the internal value is always used.
This has particular consequences for conversion of numbers to strings:

$ gawk ’BEGIN { printf "0x11 is <%s>\n", 0x11 }’

a 0x11 is <17>

6.1.1.3 Regular Expression Constants

A regexp constant is a regular expression description enclosed in slashes, such as
/^beginning and end$/. Most regexps used in awk programs are constant, but the ‘~’
and ‘!~’ matching operators can also match computed or dynamic regexps (which are just
ordinary strings or variables that contain a regexp).

Chapter 6: Expressions 93

6.1.2 Using Regular Expression Constants

When used on the righthand side of the ‘~’ or ‘!~’ operators, a regexp constant merely
stands for the regexp that is to be matched. However, regexp constants (such as /foo/)
may be used like simple expressions. When a regexp constant appears by itself, it has
the same meaning as if it appeared in a pattern, i.e., ‘($0 ~ /foo/)’ See Section 7.1.2
[Expressions as Patterns], page 113. This means that the following two code segments:

if ($0 ~ /barfly/ || $0 ~ /camelot/)

print "found"

and:

if (/barfly/ || /camelot/)

print "found"

are exactly equivalent. One rather bizarre consequence of this rule is that the following
Boolean expression is valid, but does not do what the user probably intended:

Note that /foo/ is on the left of the ~

if (/foo/ ~ $1) print "found foo"

This code is “obviously” testing $1 for a match against the regexp /foo/. But in fact, the
expression ‘/foo/ ~ $1’ really means ‘($0 ~ /foo/) ~ $1’. In other words, first match the
input record against the regexp /foo/. The result is either zero or one, depending upon
the success or failure of the match. That result is then matched against the first field in
the record. Because it is unlikely that you would ever really want to make this kind of test,
gawk issues a warning when it sees this construct in a program. Another consequence of
this rule is that the assignment statement:

matches = /foo/

assigns either zero or one to the variable matches, depending upon the contents of the
current input record.

Constant regular expressions are also used as the first argument for the gensub(), sub(),
and gsub() functions, as the second argument of the match() function, and as the third
argument of the patsplit() function (see Section 9.1.3 [String-Manipulation Functions],
page 153). Modern implementations of awk, including gawk, allow the third argument of
split() to be a regexp constant, but some older implementations do not. This can lead to
confusion when attempting to use regexp constants as arguments to user-defined functions
(see Section 9.2 [User-Defined Functions], page 175). For example:

function mysub(pat, repl, str, global)

{

if (global)

gsub(pat, repl, str)

else

sub(pat, repl, str)

return str

}

{

...

text = "hi! hi yourself!"

94 GAWK: Effective AWK Programming

mysub(/hi/, "howdy", text, 1)

...

}

In this example, the programmer wants to pass a regexp constant to the user-defined
function mysub, which in turn passes it on to either sub() or gsub(). However, what really
happens is that the pat parameter is either one or zero, depending upon whether or not $0
matches /hi/. gawk issues a warning when it sees a regexp constant used as a parameter
to a user-defined function, since passing a truth value in this way is probably not what was
intended.

6.1.3 Variables

Variables are ways of storing values at one point in your program for use later in another
part of your program. They can be manipulated entirely within the program text, and they
can also be assigned values on the awk command line.

6.1.3.1 Using Variables in a Program

Variables let you give names to values and refer to them later. Variables have already been
used in many of the examples. The name of a variable must be a sequence of letters, digits,
or underscores, and it may not begin with a digit. Case is significant in variable names; a
and A are distinct variables.

A variable name is a valid expression by itself; it represents the variable’s current value.
Variables are given new values with assignment operators, increment operators, and decre-
ment operators. See Section 6.2.3 [Assignment Expressions], page 100. In addition, the
sub() and gsub() functions can change a variable’s value, and the match(), patsplit()
and split() functions can change the contents of their array parameters. See Section 9.1.3
[String-Manipulation Functions], page 153.

A few variables have special built-in meanings, such as FS (the field separator), and
NF (the number of fields in the current input record). See Section 7.5 [Built-in Variables],
page 128, for a list of the built-in variables. These built-in variables can be used and assigned
just like all other variables, but their values are also used or changed automatically by awk.
All built-in variables’ names are entirely uppercase.

Variables in awk can be assigned either numeric or string values. The kind of value a
variable holds can change over the life of a program. By default, variables are initialized
to the empty string, which is zero if converted to a number. There is no need to explicitly
“initialize” a variable in awk, which is what you would do in C and in most other traditional
languages.

6.1.3.2 Assigning Variables on the Command Line

Any awk variable can be set by including a variable assignment among the arguments on
the command line when awk is invoked (see Section 2.3 [Other Command-Line Arguments],
page 30). Such an assignment has the following form:

variable=text

With it, a variable is set either at the beginning of the awk run or in between input files.
When the assignment is preceded with the -v option, as in the following:

-v variable=text

Chapter 6: Expressions 95

the variable is set at the very beginning, even before the BEGIN rules execute. The -v

option and its assignment must precede all the file name arguments, as well as the program
text. (See Section 2.2 [Command-Line Options], page 25, for more information about the
-v option.) Otherwise, the variable assignment is performed at a time determined by its
position among the input file arguments—after the processing of the preceding input file
argument. For example:

awk ’{ print $n }’ n=4 inventory-shipped n=2 BBS-list

prints the value of field number n for all input records. Before the first file is read, the
command line sets the variable n equal to four. This causes the fourth field to be printed in
lines from inventory-shipped. After the first file has finished, but before the second file
is started, n is set to two, so that the second field is printed in lines from BBS-list:

$ awk ’{ print $n }’ n=4 inventory-shipped n=2 BBS-list

a 15

a 24

...

a 555-5553

a 555-3412

...

Command-line arguments are made available for explicit examination by the awk pro-
gram in the ARGV array (see Section 7.5.3 [Using ARGC and ARGV], page 135). awk processes
the values of command-line assignments for escape sequences (see Section 3.2 [Escape Se-
quences], page 38).

6.1.4 Conversion of Strings and Numbers

Strings are converted to numbers and numbers are converted to strings, if the context of the
awk program demands it. For example, if the value of either foo or bar in the expression
‘foo + bar’ happens to be a string, it is converted to a number before the addition is
performed. If numeric values appear in string concatenation, they are converted to strings.
Consider the following:

two = 2; three = 3

print (two three) + 4

This prints the (numeric) value 27. The numeric values of the variables two and three are
converted to strings and concatenated together. The resulting string is converted back to
the number 23, to which 4 is then added.

If, for some reason, you need to force a number to be converted to a string, concatenate
that number with the empty string, "". To force a string to be converted to a number, add
zero to that string. A string is converted to a number by interpreting any numeric prefix
of the string as numerals: "2.5" converts to 2.5, "1e3" converts to 1000, and "25fix" has
a numeric value of 25. Strings that can’t be interpreted as valid numbers convert to zero.

The exact manner in which numbers are converted into strings is controlled by the awk

built-in variable CONVFMT (see Section 7.5 [Built-in Variables], page 128). Numbers are con-
verted using the sprintf() function with CONVFMT as the format specifier (see Section 9.1.3
[String-Manipulation Functions], page 153).

CONVFMT’s default value is "%.6g", which prints a value with at most six significant digits.
For some applications, you might want to change it to specify more precision. On most

96 GAWK: Effective AWK Programming

modern machines, 17 digits is usually enough to capture a floating-point number’s value
exactly.2

Strange results can occur if you set CONVFMT to a string that doesn’t tell sprintf() how
to format floating-point numbers in a useful way. For example, if you forget the ‘%’ in the
format, awk converts all numbers to the same constant string.

As a special case, if a number is an integer, then the result of converting it to a string is
always an integer, no matter what the value of CONVFMT may be. Given the following code
fragment:

CONVFMT = "%2.2f"

a = 12

b = a ""

b has the value "12", not "12.00".

Prior to the POSIX standard, awk used the value of OFMT for converting numbers to
strings. OFMT specifies the output format to use when printing numbers with print. CONVFMT
was introduced in order to separate the semantics of conversion from the semantics of
printing. Both CONVFMT and OFMT have the same default value: "%.6g". In the vast majority
of cases, old awk programs do not change their behavior. However, these semantics for
OFMT are something to keep in mind if you must port your new-style program to older
implementations of awk. We recommend that instead of changing your programs, just port
gawk itself. See Section 5.1 [The print Statement], page 75, for more information on the
print statement.

And, once again, where you are can matter when it comes to converting between numbers
and strings. In Section 6.6 [Where You Are Makes A Difference], page 112, we mentioned
that the local character set and language (the locale) can affect how gawk matches char-
acters. The locale also affects numeric formats. In particular, for awk programs, it affects
the decimal point character. The "C" locale, and most English-language locales, use the
period character (‘.’) as the decimal point. However, many (if not most) European and
non-English locales use the comma (‘,’) as the decimal point character.

The POSIX standard says that awk always uses the period as the decimal point when
reading the awk program source code, and for command-line variable assignments (see
Section 2.3 [Other Command-Line Arguments], page 30). However, when interpreting input
data, for print and printf output, and for number to string conversion, the local decimal
point character is used. Here are some examples indicating the difference in behavior, on a
GNU/Linux system:

$ gawk ’BEGIN { printf "%g\n", 3.1415927 }’

a 3.14159

$ LC_ALL=en_DK gawk ’BEGIN { printf "%g\n", 3.1415927 }’

a 3,14159

$ echo 4,321 | gawk ’{ print $1 + 1 }’

a 5

$ echo 4,321 | LC_ALL=en_DK gawk ’{ print $1 + 1 }’

a 5,321

2 Pathological cases can require up to 752 digits (!), but we doubt that you need to worry about this.

Chapter 6: Expressions 97

The ‘en_DK’ locale is for English in Denmark, where the comma acts as the decimal point
separator. In the normal "C" locale, gawk treats ‘4,321’ as ‘4’, while in the Danish locale,
it’s treated as the full number, 4.321.

Some earlier versions of gawk fully complied with this aspect of the standard. However,
many users in non-English locales complained about this behavior, since their data used
a period as the decimal point, so the default behavior was restored to use a period as
the decimal point character. You can use the --use-lc-numeric option (see Section 2.2
[Command-Line Options], page 25) to force gawk to use the locale’s decimal point character.
(gawk also uses the locale’s decimal point character when in POSIX mode, either via --

posix, or the POSIXLY_CORRECT environment variable.)

Table 6.1 describes the cases in which the locale’s decimal point character is used and
when a period is used. Some of these features have not been described yet.

Feature Default --posix or --use-lc-numeric
%’g Use locale Use locale
%g Use period Use locale
Input Use period Use locale
strtonum() Use period Use locale

Table 6.1: Locale Decimal Point versus A Period

Finally, modern day formal standards and IEEE standard floating point representation
can have an unusual but important effect on the way gawk converts some special string
values to numbers. The details are presented in Section D.3.3 [Standards Versus Existing
Practice], page 349.

6.2 Operators: Doing Something With Values

This section introduces the operators which make use of the values provided by constants
and variables.

6.2.1 Arithmetic Operators

The awk language uses the common arithmetic operators when evaluating expressions. All
of these arithmetic operators follow normal precedence rules and work as you would expect
them to.

The following example uses a file named grades, which contains a list of student names
as well as three test scores per student (it’s a small class):

Pat 100 97 58

Sandy 84 72 93

Chris 72 92 89

This program takes the file grades and prints the average of the scores:

$ awk ’{ sum = $2 + $3 + $4 ; avg = sum / 3

> print $1, avg }’ grades

a Pat 85

a Sandy 83

a Chris 84.3333

98 GAWK: Effective AWK Programming

The following list provides the arithmetic operators in awk, in order from the highest
precedence to the lowest:

- x Negation.

+ x Unary plus; the expression is converted to a number.

x ^ y

x ** y Exponentiation; x raised to the y power. ‘2 ^ 3’ has the value eight; the char-
acter sequence ‘**’ is equivalent to ‘^’. (c.e.)

x * y Multiplication.

x / y Division; because all numbers in awk are floating-point numbers, the result is
not rounded to an integer—‘3 / 4’ has the value 0.75. (It is a common mistake,
especially for C programmers, to forget that all numbers in awk are floating-
point, and that division of integer-looking constants produces a real number,
not an integer.)

x % y Remainder; further discussion is provided in the text, just after this list.

x + y Addition.

x - y Subtraction.

Unary plus and minus have the same precedence, the multiplication operators all have
the same precedence, and addition and subtraction have the same precedence.

When computing the remainder of ‘x % y’, the quotient is rounded toward zero to an
integer and multiplied by y. This result is subtracted from x; this operation is sometimes
known as “trunc-mod.” The following relation always holds:

b * int(a / b) + (a % b) == a

One possibly undesirable effect of this definition of remainder is that x % y is negative if
x is negative. Thus:

-17 % 8 = -1

In other awk implementations, the signedness of the remainder may be machine-
dependent.

NOTE: The POSIX standard only specifies the use of ‘^’ for exponentiation.
For maximum portability, do not use the ‘**’ operator.

6.2.2 String Concatenation

It seemed like a good idea at the time.
Brian Kernighan

There is only one string operation: concatenation. It does not have a specific operator
to represent it. Instead, concatenation is performed by writing expressions next to one
another, with no operator. For example:

$ awk ’{ print "Field number one: " $1 }’ BBS-list

a Field number one: aardvark

a Field number one: alpo-net

...

Without the space in the string constant after the ‘:’, the line runs together. For
example:

Chapter 6: Expressions 99

$ awk ’{ print "Field number one:" $1 }’ BBS-list

a Field number one:aardvark

a Field number one:alpo-net

...

Because string concatenation does not have an explicit operator, it is often necessary
to insure that it happens at the right time by using parentheses to enclose the items to
concatenate. For example, you might expect that the following code fragment concatenates
file and name:

file = "file"

name = "name"

print "something meaningful" > file name

This produces a syntax error with some versions of Unix awk.3 It is necessary to use the
following:

print "something meaningful" > (file name)

Parentheses should be used around concatenation in all but the most common contexts,
such as on the righthand side of ‘=’. Be careful about the kinds of expressions used in string
concatenation. In particular, the order of evaluation of expressions used for concatenation
is undefined in the awk language. Consider this example:

BEGIN {

a = "don’t"

print (a " " (a = "panic"))

}

It is not defined whether the assignment to a happens before or after the value of a is
retrieved for producing the concatenated value. The result could be either ‘don’t panic’,
or ‘panic panic’.

The precedence of concatenation, when mixed with other operators, is often counter-
intuitive. Consider this example:

$ awk ’BEGIN { print -12 " " -24 }’

a -12-24

This “obviously” is concatenating −12, a space, and −24. But where did the space dis-
appear to? The answer lies in the combination of operator precedences and awk’s automatic
conversion rules. To get the desired result, write the program this way:

$ awk ’BEGIN { print -12 " " (-24) }’

a -12 -24

This forces awk to treat the ‘-’ on the ‘-24’ as unary. Otherwise, it’s parsed as follows:

−12 (" " − 24)
⇒ −12 (0 − 24)
⇒ −12 (−24)
⇒ −12−24

As mentioned earlier, when doing concatenation, parenthesize. Otherwise, you’re never
quite sure what you’ll get.

3 It happens that Brian Kernighan’s awk, gawk and mawk all “get it right,” but you should not rely on this.

100 GAWK: Effective AWK Programming

6.2.3 Assignment Expressions

An assignment is an expression that stores a (usually different) value into a variable. For
example, let’s assign the value one to the variable z:

z = 1

After this expression is executed, the variable z has the value one. Whatever old value
z had before the assignment is forgotten.

Assignments can also store string values. For example, the following stores the value
"this food is good" in the variable message:

thing = "food"

predicate = "good"

message = "this " thing " is " predicate

This also illustrates string concatenation. The ‘=’ sign is called an assignment operator. It
is the simplest assignment operator because the value of the righthand operand is stored
unchanged. Most operators (addition, concatenation, and so on) have no effect except
to compute a value. If the value isn’t used, there’s no reason to use the operator. An
assignment operator is different; it does produce a value, but even if you ignore it, the
assignment still makes itself felt through the alteration of the variable. We call this a side
effect.

The lefthand operand of an assignment need not be a variable (see Section 6.1.3 [Vari-
ables], page 94); it can also be a field (see Section 4.4 [Changing the Contents of a Field],
page 54) or an array element (see Chapter 8 [Arrays in awk], page 137). These are all called
lvalues, which means they can appear on the lefthand side of an assignment operator. The
righthand operand may be any expression; it produces the new value that the assignment
stores in the specified variable, field, or array element. (Such values are called rvalues.)

It is important to note that variables do not have permanent types. A variable’s type
is simply the type of whatever value it happens to hold at the moment. In the following
program fragment, the variable foo has a numeric value at first, and a string value later on:

foo = 1

print foo

foo = "bar"

print foo

When the second assignment gives foo a string value, the fact that it previously had a
numeric value is forgotten.

String values that do not begin with a digit have a numeric value of zero. After executing
the following code, the value of foo is five:

foo = "a string"

foo = foo + 5

NOTE: Using a variable as a number and then later as a string can be confusing
and is poor programming style. The previous two examples illustrate how awk

works, not how you should write your programs!

An assignment is an expression, so it has a value—the same value that is assigned. Thus,
‘z = 1’ is an expression with the value one. One consequence of this is that you can write
multiple assignments together, such as:

Chapter 6: Expressions 101

x = y = z = 5

This example stores the value five in all three variables (x, y, and z). It does so because
the value of ‘z = 5’, which is five, is stored into y and then the value of ‘y = z = 5’, which is
five, is stored into x.

Assignments may be used anywhere an expression is called for. For example, it is valid
to write ‘x != (y = 1)’ to set y to one, and then test whether x equals one. But this style
tends to make programs hard to read; such nesting of assignments should be avoided, except
perhaps in a one-shot program.

Aside from ‘=’, there are several other assignment operators that do arithmetic with the
old value of the variable. For example, the operator ‘+=’ computes a new value by adding
the righthand value to the old value of the variable. Thus, the following assignment adds
five to the value of foo:

foo += 5

This is equivalent to the following:

foo = foo + 5

Use whichever makes the meaning of your program clearer.

There are situations where using ‘+=’ (or any assignment operator) is not the same as
simply repeating the lefthand operand in the righthand expression. For example:

Thanks to Pat Rankin for this example

BEGIN {

foo[rand()] += 5

for (x in foo)

print x, foo[x]

bar[rand()] = bar[rand()] + 5

for (x in bar)

print x, bar[x]

}

The indices of bar are practically guaranteed to be different, because rand() returns differ-
ent values each time it is called. (Arrays and the rand() function haven’t been covered yet.
See Chapter 8 [Arrays in awk], page 137, and see Section 9.1.2 [Numeric Functions], page 151,
for more information). This example illustrates an important fact about assignment oper-
ators: the lefthand expression is only evaluated once. It is up to the implementation as to
which expression is evaluated first, the lefthand or the righthand. Consider this example:

i = 1

a[i += 2] = i + 1

The value of a[3] could be either two or four.

Table 6.2 lists the arithmetic assignment operators. In each case, the righthand operand
is an expression whose value is converted to a number.

102 GAWK: Effective AWK Programming

Operator Effect
lvalue += increment Adds increment to the value of lvalue.
lvalue -= decrement Subtracts decrement from the value of lvalue.
lvalue *= coefficient Multiplies the value of lvalue by coefficient.
lvalue /= divisor Divides the value of lvalue by divisor.
lvalue %= modulus Sets lvalue to its remainder by modulus.
lvalue ^= power
lvalue **= power Raises lvalue to the power power. (c.e.)

Table 6.2: Arithmetic Assignment Operators

NOTE: Only the ‘^=’ operator is specified by POSIX. For maximum portability,
do not use the ‘**=’ operator.

Advanced Notes: Syntactic Ambiguities Between ‘/=’ and Regular
Expressions

There is a syntactic ambiguity between the /= assignment operator and regexp constants
whose first character is an ‘=’. This is most notable in commercial awk versions. For
example:

$ awk /==/ /dev/null

error awk: syntax error at source line 1

error context is

error >>> /= <<<

error awk: bailing out at source line 1

A workaround is:

awk ’/[=]=/’ /dev/null

gawk does not have this problem, nor do the other freely available versions described in
Section B.5 [Other Freely Available awk Implementations], page 325.

6.2.4 Increment and Decrement Operators

Increment and decrement operators increase or decrease the value of a variable by one. An
assignment operator can do the same thing, so the increment operators add no power to
the awk language; however, they are convenient abbreviations for very common operations.

The operator used for adding one is written ‘++’. It can be used to increment a variable
either before or after taking its value. To pre-increment a variable v, write ‘++v’. This adds
one to the value of v—that new value is also the value of the expression. (The assignment
expression ‘v += 1’ is completely equivalent.) Writing the ‘++’ after the variable specifies
post-increment. This increments the variable value just the same; the difference is that the
value of the increment expression itself is the variable’s old value. Thus, if foo has the value
four, then the expression ‘foo++’ has the value four, but it changes the value of foo to five.
In other words, the operator returns the old value of the variable, but with the side effect
of incrementing it.

The post-increment ‘foo++’ is nearly the same as writing ‘(foo += 1) - 1’. It is not
perfectly equivalent because all numbers in awk are floating-point—in floating-point, ‘foo

Chapter 6: Expressions 103

+ 1 - 1’ does not necessarily equal foo. But the difference is minute as long as you stick to
numbers that are fairly small (less than 10e12).

Fields and array elements are incremented just like variables. (Use ‘$(i++)’ when you
want to do a field reference and a variable increment at the same time. The parentheses
are necessary because of the precedence of the field reference operator ‘$’.)

The decrement operator ‘--’ works just like ‘++’, except that it subtracts one instead
of adding it. As with ‘++’, it can be used before the lvalue to pre-decrement or after it to
post-decrement. Following is a summary of increment and decrement expressions:

++lvalue Increment lvalue, returning the new value as the value of the expression.

lvalue++ Increment lvalue, returning the old value of lvalue as the value of the expression.

--lvalue Decrement lvalue, returning the new value as the value of the expression. (This
expression is like ‘++lvalue’, but instead of adding, it subtracts.)

lvalue-- Decrement lvalue, returning the old value of lvalue as the value of the expres-
sion. (This expression is like ‘lvalue++’, but instead of adding, it subtracts.)

Advanced Notes: Operator Evaluation Order

Doctor, doctor! It hurts when I do this!
So don’t do that!
Groucho Marx

What happens for something like the following?

b = 6

print b += b++

Or something even stranger?

b = 6

b += ++b + b++

print b

In other words, when do the various side effects prescribed by the postfix operators
(‘b++’) take effect? When side effects happen is implementation defined. In other words, it
is up to the particular version of awk. The result for the first example may be 12 or 13, and
for the second, it may be 22 or 23.

In short, doing things like this is not recommended and definitely not anything that you
can rely upon for portability. You should avoid such things in your own programs.

6.3 Truth Values and Conditions

In certain contexts, expression values also serve as “truth values;” i.e., they determine what
should happen next as the program runs. This section describes how awk defines “true”
and “false” and how values are compared.

6.3.1 True and False in awk

Many programming languages have a special representation for the concepts of “true” and
“false.” Such languages usually use the special constants true and false, or perhaps their
uppercase equivalents. However, awk is different. It borrows a very simple concept of true

104 GAWK: Effective AWK Programming

and false from C. In awk, any nonzero numeric value or any nonempty string value is true.
Any other value (zero or the null string, "") is false. The following program prints ‘A
strange truth value’ three times:

BEGIN {

if (3.1415927)

print "A strange truth value"

if ("Four Score And Seven Years Ago")

print "A strange truth value"

if (j = 57)

print "A strange truth value"

}

There is a surprising consequence of the “nonzero or non-null” rule: the string constant
"0" is actually true, because it is non-null.

6.3.2 Variable Typing and Comparison Expressions

The Guide is definitive. Reality is frequently inaccurate.
The Hitchhiker’s Guide to the Galaxy

Unlike other programming languages, awk variables do not have a fixed type. Instead,
they can be either a number or a string, depending upon the value that is assigned to them.
We look now at how variables are typed, and how awk compares variables.

6.3.2.1 String Type Versus Numeric Type

The 1992 POSIX standard introduced the concept of a numeric string, which is simply a
string that looks like a number—for example, " +2". This concept is used for determining
the type of a variable. The type of the variable is important because the types of two
variables determine how they are compared. The various versions of the POSIX standard
did not get the rules quite right for several editions. Fortunately, as of at least the 2008
standard (and possibly earlier), the standard has been fixed, and variable typing follows
these rules:4

• A numeric constant or the result of a numeric operation has the numeric attribute.

• A string constant or the result of a string operation has the string attribute.

• Fields, getline input, FILENAME, ARGV elements, ENVIRON elements, and the elements
of an array created by patsplit(), split() and match() that are numeric strings
have the strnum attribute. Otherwise, they have the string attribute. Uninitialized
variables also have the strnum attribute.

• Attributes propagate across assignments but are not changed by any use.

The last rule is particularly important. In the following program, a has numeric type,
even though it is later used in a string operation:

BEGIN {

a = 12.345

b = a " is a cute number"

print b

4 gawk has followed these rules for many years, and it is gratifying that the POSIX standard is also now
correct.

Chapter 6: Expressions 105

}

When two operands are compared, either string comparison or numeric comparison may
be used. This depends upon the attributes of the operands, according to the following
symmetric matrix:

STRING NUMERIC STRNUM

STRING string string string
NUMERIC string numeric numeric
STRNUM string numeric numeric

The basic idea is that user input that looks numeric—and only user input—should be
treated as numeric, even though it is actually made of characters and is therefore also
a string. Thus, for example, the string constant " +3.14", when it appears in program
source code, is a string—even though it looks numeric—and is never treated as number for
comparison purposes.

In short, when one operand is a “pure” string, such as a string constant, then a string
comparison is performed. Otherwise, a numeric comparison is performed.

This point bears additional emphasis: All user input is made of characters, and so is
first and foremost of string type; input strings that look numeric are additionally given
the strnum attribute. Thus, the six-character input string ‘ +3.14’ receives the strnum
attribute. In contrast, the eight-character literal " +3.14" appearing in program text is a
string constant. The following examples print ‘1’ when the comparison between the two
different constants is true, ‘0’ otherwise:

$ echo ’ +3.14’ | gawk ’{ print $0 == " +3.14" }’ True
a 1

$ echo ’ +3.14’ | gawk ’{ print $0 == "+3.14" }’ False
a 0

$ echo ’ +3.14’ | gawk ’{ print $0 == "3.14" }’ False
a 0

$ echo ’ +3.14’ | gawk ’{ print $0 == 3.14 }’ True
a 1

$ echo ’ +3.14’ | gawk ’{ print $1 == " +3.14" }’ False
a 0

$ echo ’ +3.14’ | gawk ’{ print $1 == "+3.14" }’ True
a 1

$ echo ’ +3.14’ | gawk ’{ print $1 == "3.14" }’ False
a 0

$ echo ’ +3.14’ | gawk ’{ print $1 == 3.14 }’ True
a 1

6.3.2.2 Comparison Operators

Comparison expressions compare strings or numbers for relationships such as equality. They
are written using relational operators, which are a superset of those in C. Table 6.3 describes
them.

106 GAWK: Effective AWK Programming

Expression Result
x < y True if x is less than y.
x <= y True if x is less than or equal to y.
x > y True if x is greater than y.
x >= y True if x is greater than or equal to y.
x == y True if x is equal to y.
x != y True if x is not equal to y.
x ~ y True if the string x matches the regexp denoted by y.
x !~ y True if the string x does not match the regexp denoted by y.
subscript in array True if the array array has an element with the subscript subscript.

Table 6.3: Relational Operators

Comparison expressions have the value one if true and zero if false. When comparing
operands of mixed types, numeric operands are converted to strings using the value of
CONVFMT (see Section 6.1.4 [Conversion of Strings and Numbers], page 95).

Strings are compared by comparing the first character of each, then the second character
of each, and so on. Thus, "10" is less than "9". If there are two strings where one is a
prefix of the other, the shorter string is less than the longer one. Thus, "abc" is less than
"abcd".

It is very easy to accidentally mistype the ‘==’ operator and leave off one of the ‘=’
characters. The result is still valid awk code, but the program does not do what is intended:

if (a = b) # oops! should be a == b

...

else

...

Unless b happens to be zero or the null string, the if part of the test always succeeds.
Because the operators are so similar, this kind of error is very difficult to spot when scanning
the source code.

The following table of expressions illustrates the kind of comparison gawk performs, as
well as what the result of the comparison is:

1.5 <= 2.0

numeric comparison (true)

"abc" >= "xyz"

string comparison (false)

1.5 != " +2"

string comparison (true)

"1e2" < "3"

string comparison (true)

a = 2; b = "2"

a == b string comparison (true)

a = 2; b = " +2"

a == b string comparison (false)

Chapter 6: Expressions 107

In this example:

$ echo 1e2 3 | awk ’{ print ($1 < $2) ? "true" : "false" }’

a false

the result is ‘false’ because both $1 and $2 are user input. They are numeric strings—
therefore both have the strnum attribute, dictating a numeric comparison. The purpose of
the comparison rules and the use of numeric strings is to attempt to produce the behavior
that is “least surprising,” while still “doing the right thing.”

String comparisons and regular expression comparisons are very different. For example:

x == "foo"

has the value one, or is true if the variable x is precisely ‘foo’. By contrast:

x ~ /foo/

has the value one if x contains ‘foo’, such as "Oh, what a fool am I!".

The righthand operand of the ‘~’ and ‘!~’ operators may be either a regexp constant
(/.../) or an ordinary expression. In the latter case, the value of the expression as a string
is used as a dynamic regexp (see Section 3.1 [How to Use Regular Expressions], page 37;
also see Section 3.8 [Using Dynamic Regexps], page 47).

In modern implementations of awk, a constant regular expression in slashes by itself is
also an expression. The regexp /regexp/ is an abbreviation for the following comparison
expression:

$0 ~ /regexp/

One special place where /foo/ is not an abbreviation for ‘$0 ~ /foo/’ is when it is the
righthand operand of ‘~’ or ‘!~’. See Section 6.1.2 [Using Regular Expression Constants],
page 93, where this is discussed in more detail.

6.3.2.3 String Comparison With POSIX Rules

The POSIX standard says that string comparison is performed based on the locale’s collating
order. This is usually very different from the results obtained when doing straight character-
by-character comparison.5

Because this behavior differs considerably from existing practice, gawk only implements
it when in POSIX mode (see Section 2.2 [Command-Line Options], page 25). Here is an
example to illustrate the difference, in an ‘en_US.UTF-8’ locale:

$ gawk ’BEGIN { printf("ABC < abc = %s\n",

> ("ABC" < "abc" ? "TRUE" : "FALSE")) }’

a ABC < abc = TRUE

$ gawk --posix ’BEGIN { printf("ABC < abc = %s\n",

> ("ABC" < "abc" ? "TRUE" : "FALSE")) }’

a ABC < abc = FALSE

6.3.3 Boolean Expressions

A Boolean expression is a combination of comparison expressions or matching expressions,
using the Boolean operators “or” (‘||’), “and” (‘&&’), and “not” (‘!’), along with parentheses

5 Technically, string comparison is supposed to behave the same way as if the strings are compared with
the C strcoll() function.

108 GAWK: Effective AWK Programming

to control nesting. The truth value of the Boolean expression is computed by combining
the truth values of the component expressions. Boolean expressions are also referred to as
logical expressions. The terms are equivalent.

Boolean expressions can be used wherever comparison and matching expressions can be
used. They can be used in if, while, do, and for statements (see Section 7.4 [Control
Statements in Actions], page 120). They have numeric values (one if true, zero if false)
that come into play if the result of the Boolean expression is stored in a variable or used in
arithmetic.

In addition, every Boolean expression is also a valid pattern, so you can use one as a
pattern to control the execution of rules. The Boolean operators are:

boolean1 && boolean2

True if both boolean1 and boolean2 are true. For example, the following state-
ment prints the current input record if it contains both ‘2400’ and ‘foo’:

if ($0 ~ /2400/ && $0 ~ /foo/) print

The subexpression boolean2 is evaluated only if boolean1 is true. This can
make a difference when boolean2 contains expressions that have side effects. In
the case of ‘$0 ~ /foo/ && ($2 == bar++)’, the variable bar is not incremented
if there is no substring ‘foo’ in the record.

boolean1 || boolean2

True if at least one of boolean1 or boolean2 is true. For example, the following
statement prints all records in the input that contain either ‘2400’ or ‘foo’ or
both:

if ($0 ~ /2400/ || $0 ~ /foo/) print

The subexpression boolean2 is evaluated only if boolean1 is false. This can
make a difference when boolean2 contains expressions that have side effects.

! boolean True if boolean is false. For example, the following program prints ‘no home!’
in the unusual event that the HOME environment variable is not defined:

BEGIN { if (! ("HOME" in ENVIRON))

print "no home!" }

(The in operator is described in Section 8.1.2 [Referring to an Array Element],
page 138.)

The ‘&&’ and ‘||’ operators are called short-circuit operators because of the way they
work. Evaluation of the full expression is “short-circuited” if the result can be determined
part way through its evaluation.

Statements that use ‘&&’ or ‘||’ can be continued simply by putting a newline after them.
But you cannot put a newline in front of either of these operators without using backslash
continuation (see Section 1.6 [awk Statements Versus Lines], page 21).

The actual value of an expression using the ‘!’ operator is either one or zero, depending
upon the truth value of the expression it is applied to. The ‘!’ operator is often useful for
changing the sense of a flag variable from false to true and back again. For example, the
following program is one way to print lines in between special bracketing lines:

$1 == "START" { interested = ! interested; next }

interested == 1 { print }

Chapter 6: Expressions 109

$1 == "END" { interested = ! interested; next }

The variable interested, as with all awk variables, starts out initialized to zero, which is
also false. When a line is seen whose first field is ‘START’, the value of interested is toggled
to true, using ‘!’. The next rule prints lines as long as interested is true. When a line is
seen whose first field is ‘END’, interested is toggled back to false.6

NOTE: The next statement is discussed in Section 7.4.8 [The next Statement],
page 126. next tells awk to skip the rest of the rules, get the next record, and
start processing the rules over again at the top. The reason it’s there is to avoid
printing the bracketing ‘START’ and ‘END’ lines.

6.3.4 Conditional Expressions

A conditional expression is a special kind of expression that has three operands. It allows
you to use one expression’s value to select one of two other expressions. The conditional
expression is the same as in the C language, as shown here:

selector ? if-true-exp : if-false-exp

There are three subexpressions. The first, selector, is always computed first. If it is “true”
(not zero or not null), then if-true-exp is computed next and its value becomes the value of
the whole expression. Otherwise, if-false-exp is computed next and its value becomes the
value of the whole expression. For example, the following expression produces the absolute
value of x:

x >= 0 ? x : -x

Each time the conditional expression is computed, only one of if-true-exp and if-false-exp
is used; the other is ignored. This is important when the expressions have side effects. For
example, this conditional expression examines element i of either array a or array b, and
increments i:

x == y ? a[i++] : b[i++]

This is guaranteed to increment i exactly once, because each time only one of the two
increment expressions is executed and the other is not. See Chapter 8 [Arrays in awk],
page 137, for more information about arrays.

As a minor gawk extension, a statement that uses ‘?:’ can be continued simply by putting
a newline after either character. However, putting a newline in front of either character
does not work without using backslash continuation (see Section 1.6 [awk Statements Versus
Lines], page 21). If --posix is specified (see Section 2.2 [Command-Line Options], page 25),
then this extension is disabled.

6.4 Function Calls

A function is a name for a particular calculation. This enables you to ask for it by name at
any point in the program. For example, the function sqrt() computes the square root of
a number.

A fixed set of functions are built-in, which means they are available in every awk program.
The sqrt() function is one of these. See Section 9.1 [Built-in Functions], page 151, for a
list of built-in functions and their descriptions. In addition, you can define functions for

6 This program has a bug; it prints lines starting with ‘END’. How would you fix it?

110 GAWK: Effective AWK Programming

use in your program. See Section 9.2 [User-Defined Functions], page 175, for instructions
on how to do this.

The way to use a function is with a function call expression, which consists of the
function name followed immediately by a list of arguments in parentheses. The arguments
are expressions that provide the raw materials for the function’s calculations. When there
is more than one argument, they are separated by commas. If there are no arguments, just
write ‘()’ after the function name. The following examples show function calls with and
without arguments:

sqrt(x^2 + y^2) one argument
atan2(y, x) two arguments
rand() no arguments

CAUTION: Do not put any space between the function name and the
open-parenthesis! A user-defined function name looks just like the name of
a variable—a space would make the expression look like concatenation of a
variable with an expression inside parentheses. With built-in functions, space
before the parenthesis is harmless, but it is best not to get into the habit of
using space to avoid mistakes with user-defined functions.

Each function expects a particular number of arguments. For example, the sqrt()

function must be called with a single argument, the number of which to take the square
root:

sqrt(argument)

Some of the built-in functions have one or more optional arguments. If those arguments
are not supplied, the functions use a reasonable default value. See Section 9.1 [Built-in
Functions], page 151, for full details. If arguments are omitted in calls to user-defined
functions, then those arguments are treated as local variables and initialized to the empty
string (see Section 9.2 [User-Defined Functions], page 175).

As an advanced feature, gawk provides indirect function calls, which is a way to choose
the function to call at runtime, instead of when you write the source code to your program.
We defer discussion of this feature until later; see Section 9.3 [Indirect Function Calls],
page 183.

Like every other expression, the function call has a value, which is computed by the
function based on the arguments you give it. In this example, the value of ‘sqrt(argument)’
is the square root of argument. The following program reads numbers, one number per line,
and prints the square root of each one:

$ awk ’{ print "The square root of", $1, "is", sqrt($1) }’

1

a The square root of 1 is 1

3

a The square root of 3 is 1.73205

5

a The square root of 5 is 2.23607

Ctrl-d

A function can also have side effects, such as assigning values to certain variables or doing
I/O. This program shows how the match() function (see Section 9.1.3 [String-Manipulation
Functions], page 153) changes the variables RSTART and RLENGTH:

Chapter 6: Expressions 111

{

if (match($1, $2))

print RSTART, RLENGTH

else

print "no match"

}

Here is a sample run:

$ awk -f matchit.awk

aaccdd c+

a 3 2

foo bar

a no match

abcdefg e

a 5 1

6.5 Operator Precedence (How Operators Nest)

Operator precedence determines how operators are grouped when different operators appear
close by in one expression. For example, ‘*’ has higher precedence than ‘+’; thus, ‘a + b *

c’ means to multiply b and c, and then add a to the product (i.e., ‘a + (b * c)’).

The normal precedence of the operators can be overruled by using parentheses. Think of
the precedence rules as saying where the parentheses are assumed to be. In fact, it is wise
to always use parentheses whenever there is an unusual combination of operators, because
other people who read the program may not remember what the precedence is in this case.
Even experienced programmers occasionally forget the exact rules, which leads to mistakes.
Explicit parentheses help prevent any such mistakes.

When operators of equal precedence are used together, the leftmost operator groups
first, except for the assignment, conditional, and exponentiation operators, which group in
the opposite order. Thus, ‘a - b + c’ groups as ‘(a - b) + c’ and ‘a = b = c’ groups as ‘a =

(b = c)’.

Normally the precedence of prefix unary operators does not matter, because there is only
one way to interpret them: innermost first. Thus, ‘$++i’ means ‘$(++i)’ and ‘++$x’ means
‘++($x)’. However, when another operator follows the operand, then the precedence of the
unary operators can matter. ‘$x^2’ means ‘($x)^2’, but ‘-x^2’ means ‘-(x^2)’, because ‘-’
has lower precedence than ‘^’, whereas ‘$’ has higher precedence. Also, operators cannot be
combined in a way that violates the precedence rules; for example, ‘$$0++--’ is not a valid
expression because the first ‘$’ has higher precedence than the ‘++’; to avoid the problem
the expression can be rewritten as ‘$($0++)--’.

This table presents awk’s operators, in order of highest to lowest precedence:

(...) Grouping.

$ Field reference.

++ -- Increment, decrement.

^ ** Exponentiation. These operators group right-to-left.

+ - ! Unary plus, minus, logical “not.”

112 GAWK: Effective AWK Programming

* / % Multiplication, division, remainder.

+ - Addition, subtraction.

String Concatenation
There is no special symbol for concatenation. The operands are simply written
side by side (see Section 6.2.2 [String Concatenation], page 98).

< <= == != > >= >> | |&

Relational and redirection. The relational operators and the redirections have
the same precedence level. Characters such as ‘>’ serve both as relationals and
as redirections; the context distinguishes between the two meanings.

Note that the I/O redirection operators in print and printf statements belong
to the statement level, not to expressions. The redirection does not produce an
expression that could be the operand of another operator. As a result, it does
not make sense to use a redirection operator near another operator of lower
precedence without parentheses. Such combinations (for example, ‘print foo

> a ? b : c’), result in syntax errors. The correct way to write this statement
is ‘print foo > (a ? b : c)’.

~ !~ Matching, nonmatching.

in Array membership.

&& Logical “and”.

|| Logical “or”.

?: Conditional. This operator groups right-to-left.

= += -= *= /= %= ^= **=

Assignment. These operators group right-to-left.

NOTE: The ‘|&’, ‘**’, and ‘**=’ operators are not specified by POSIX. For
maximum portability, do not use them.

6.6 Where You Are Makes A Difference

Modern systems support the notion of locales: a way to tell the system about the local
character set and language.

Once upon a time, the locale setting used to affect regexp matching (see Section A.7
[Regexp Ranges and Locales: A Long Sad Story], page 308), but this is no longer true.

Locales can affect record splitting. For the normal case of ‘RS = "\n"’, the locale is
largely irrelevant. For other single-character record separators, setting ‘LC_ALL=C’ in the
environment will give you much better performance when reading records. Otherwise, gawk
has to make several function calls, per input character, to find the record terminator.

According to POSIX, string comparison is also affected by locales (similar to regular
expressions). The details are presented in Section 6.3.2.3 [String Comparison With POSIX
Rules], page 107.

Finally, the locale affects the value of the decimal point character used when gawk parses
input data. This is discussed in detail in Section 6.1.4 [Conversion of Strings and Numbers],
page 95.

Chapter 7: Patterns, Actions, and Variables 113

7 Patterns, Actions, and Variables

As you have already seen, each awk statement consists of a pattern with an associated
action. This chapter describes how you build patterns and actions, what kinds of things
you can do within actions, and awk’s built-in variables.

The pattern-action rules and the statements available for use within actions form the
core of awk programming. In a sense, everything covered up to here has been the foundation
that programs are built on top of. Now it’s time to start building something useful.

7.1 Pattern Elements

Patterns in awk control the execution of rules—a rule is executed when its pattern matches
the current input record. The following is a summary of the types of awk patterns:

/regular expression/

A regular expression. It matches when the text of the input record fits the
regular expression. (See Chapter 3 [Regular Expressions], page 37.)

expression

A single expression. It matches when its value is nonzero (if a number) or
non-null (if a string). (See Section 7.1.2 [Expressions as Patterns], page 113.)

pat1, pat2

A pair of patterns separated by a comma, specifying a range of records. The
range includes both the initial record that matches pat1 and the final record
that matches pat2. (See Section 7.1.3 [Specifying Record Ranges with Patterns],
page 115.)

BEGIN

END Special patterns for you to supply startup or cleanup actions for your awk

program. (See Section 7.1.4 [The BEGIN and END Special Patterns], page 116.)

BEGINFILE

ENDFILE Special patterns for you to supply startup or cleanup actions to be done on a per
file basis. (See Section 7.1.5 [The BEGINFILE and ENDFILE Special Patterns],
page 117.)

empty The empty pattern matches every input record. (See Section 7.1.6 [The Empty
Pattern], page 118.)

7.1.1 Regular Expressions as Patterns

Regular expressions are one of the first kinds of patterns presented in this book. This kind
of pattern is simply a regexp constant in the pattern part of a rule. Its meaning is ‘$0 ~

/pattern/’. The pattern matches when the input record matches the regexp. For example:

/foo|bar|baz/ { buzzwords++ }

END { print buzzwords, "buzzwords seen" }

7.1.2 Expressions as Patterns

Any awk expression is valid as an awk pattern. The pattern matches if the expression’s
value is nonzero (if a number) or non-null (if a string). The expression is reevaluated each

114 GAWK: Effective AWK Programming

time the rule is tested against a new input record. If the expression uses fields such as $1,
the value depends directly on the new input record’s text; otherwise, it depends on only
what has happened so far in the execution of the awk program.

Comparison expressions, using the comparison operators described in Section 6.3.2 [Vari-
able Typing and Comparison Expressions], page 104, are a very common kind of pattern.
Regexp matching and nonmatching are also very common expressions. The left operand
of the ‘~’ and ‘!~’ operators is a string. The right operand is either a constant regular
expression enclosed in slashes (/regexp/), or any expression whose string value is used as
a dynamic regular expression (see Section 3.8 [Using Dynamic Regexps], page 47). The
following example prints the second field of each input record whose first field is precisely
‘foo’:

$ awk ’$1 == "foo" { print $2 }’ BBS-list

(There is no output, because there is no BBS site with the exact name ‘foo’.) Contrast
this with the following regular expression match, which accepts any record with a first field
that contains ‘foo’:

$ awk ’$1 ~ /foo/ { print $2 }’ BBS-list

a 555-1234

a 555-6699

a 555-6480

a 555-2127

A regexp constant as a pattern is also a special case of an expression pattern. The
expression /foo/ has the value one if ‘foo’ appears in the current input record. Thus, as a
pattern, /foo/ matches any record containing ‘foo’.

Boolean expressions are also commonly used as patterns. Whether the pattern matches
an input record depends on whether its subexpressions match. For example, the following
command prints all the records in BBS-list that contain both ‘2400’ and ‘foo’:

$ awk ’/2400/ && /foo/’ BBS-list

a fooey 555-1234 2400/1200/300 B

The following command prints all records in BBS-list that contain either ‘2400’ or ‘foo’
(or both, of course):

$ awk ’/2400/ || /foo/’ BBS-list

a alpo-net 555-3412 2400/1200/300 A

a bites 555-1675 2400/1200/300 A

a fooey 555-1234 2400/1200/300 B

a foot 555-6699 1200/300 B

a macfoo 555-6480 1200/300 A

a sdace 555-3430 2400/1200/300 A

a sabafoo 555-2127 1200/300 C

The following command prints all records in BBS-list that do not contain the string
‘foo’:

$ awk ’! /foo/’ BBS-list

a aardvark 555-5553 1200/300 B

a alpo-net 555-3412 2400/1200/300 A

a barfly 555-7685 1200/300 A

Chapter 7: Patterns, Actions, and Variables 115

a bites 555-1675 2400/1200/300 A

a camelot 555-0542 300 C

a core 555-2912 1200/300 C

a sdace 555-3430 2400/1200/300 A

The subexpressions of a Boolean operator in a pattern can be constant regular expres-
sions, comparisons, or any other awk expressions. Range patterns are not expressions, so
they cannot appear inside Boolean patterns. Likewise, the special patterns BEGIN, END,
BEGINFILE and ENDFILE, which never match any input record, are not expressions and
cannot appear inside Boolean patterns.

The precedence of the different operators which can appear in patterns is described in
Section 6.5 [Operator Precedence (How Operators Nest)], page 111.

7.1.3 Specifying Record Ranges with Patterns

A range pattern is made of two patterns separated by a comma, in the form ‘begpat,
endpat’. It is used to match ranges of consecutive input records. The first pattern, begpat,
controls where the range begins, while endpat controls where the pattern ends. For example,
the following:

awk ’$1 == "on", $1 == "off"’ myfile

prints every record in myfile between ‘on’/‘off’ pairs, inclusive.

A range pattern starts out by matching begpat against every input record. When a
record matches begpat, the range pattern is turned on and the range pattern matches this
record as well. As long as the range pattern stays turned on, it automatically matches every
input record read. The range pattern also matches endpat against every input record; when
this succeeds, the range pattern is turned off again for the following record. Then the range
pattern goes back to checking begpat against each record.

The record that turns on the range pattern and the one that turns it off both match the
range pattern. If you don’t want to operate on these records, you can write if statements
in the rule’s action to distinguish them from the records you are interested in.

It is possible for a pattern to be turned on and off by the same record. If the record
satisfies both conditions, then the action is executed for just that record. For example,
suppose there is text between two identical markers (e.g., the ‘%’ symbol), each on its own
line, that should be ignored. A first attempt would be to combine a range pattern that
describes the delimited text with the next statement (not discussed yet, see Section 7.4.8
[The next Statement], page 126). This causes awk to skip any further processing of the
current record and start over again with the next input record. Such a program looks like
this:

/^%$/,/^%$/ { next }

{ print }

This program fails because the range pattern is both turned on and turned off by the first
line, which just has a ‘%’ on it. To accomplish this task, write the program in the following
manner, using a flag:

/^%$/ { skip = ! skip; next }

skip == 1 { next } # skip lines with ‘skip’ set

116 GAWK: Effective AWK Programming

In a range pattern, the comma (‘,’) has the lowest precedence of all the operators (i.e.,
it is evaluated last). Thus, the following program attempts to combine a range pattern with
another, simpler test:

echo Yes | awk ’/1/,/2/ || /Yes/’

The intent of this program is ‘(/1/,/2/) || /Yes/’. However, awk interprets this as
‘/1/, (/2/ || /Yes/)’. This cannot be changed or worked around; range patterns do not
combine with other patterns:

$ echo Yes | gawk ’(/1/,/2/) || /Yes/’

error gawk: cmd. line:1: (/1/,/2/) || /Yes/

error gawk: cmd. line:1: ^ syntax error

7.1.4 The BEGIN and END Special Patterns

All the patterns described so far are for matching input records. The BEGIN and END special
patterns are different. They supply startup and cleanup actions for awk programs. BEGIN

and END rules must have actions; there is no default action for these rules because there is
no current record when they run. BEGIN and END rules are often referred to as “BEGIN and
END blocks” by long-time awk programmers.

7.1.4.1 Startup and Cleanup Actions

A BEGIN rule is executed once only, before the first input record is read. Likewise, an END

rule is executed once only, after all the input is read. For example:

$ awk ’

> BEGIN { print "Analysis of \"foo\"" }

> /foo/ { ++n }

> END { print "\"foo\" appears", n, "times." }’ BBS-list

a Analysis of "foo"

a "foo" appears 4 times.

This program finds the number of records in the input file BBS-list that contain the
string ‘foo’. The BEGIN rule prints a title for the report. There is no need to use the BEGIN
rule to initialize the counter n to zero, since awk does this automatically (see Section 6.1.3
[Variables], page 94). The second rule increments the variable n every time a record con-
taining the pattern ‘foo’ is read. The END rule prints the value of n at the end of the
run.

The special patterns BEGIN and END cannot be used in ranges or with Boolean operators
(indeed, they cannot be used with any operators). An awk program may have multiple
BEGIN and/or END rules. They are executed in the order in which they appear: all the
BEGIN rules at startup and all the END rules at termination. BEGIN and END rules may
be intermixed with other rules. This feature was added in the 1987 version of awk and is
included in the POSIX standard. The original (1978) version of awk required the BEGIN

rule to be placed at the beginning of the program, the END rule to be placed at the end,
and only allowed one of each. This is no longer required, but it is a good idea to follow this
template in terms of program organization and readability.

Multiple BEGIN and END rules are useful for writing library functions, because each library
file can have its own BEGIN and/or END rule to do its own initialization and/or cleanup. The
order in which library functions are named on the command line controls the order in which

Chapter 7: Patterns, Actions, and Variables 117

their BEGIN and END rules are executed. Therefore, you have to be careful when writing
such rules in library files so that the order in which they are executed doesn’t matter.
See Section 2.2 [Command-Line Options], page 25, for more information on using library
functions. See Chapter 12 [A Library of awk Functions], page 213, for a number of useful
library functions.

If an awk program has only BEGIN rules and no other rules, then the program exits after
the BEGIN rule is run.1 However, if an END rule exists, then the input is read, even if there
are no other rules in the program. This is necessary in case the END rule checks the FNR and
NR variables.

7.1.4.2 Input/Output from BEGIN and END Rules

There are several (sometimes subtle) points to remember when doing I/O from a BEGIN or
END rule. The first has to do with the value of $0 in a BEGIN rule. Because BEGIN rules
are executed before any input is read, there simply is no input record, and therefore no
fields, when executing BEGIN rules. References to $0 and the fields yield a null string or
zero, depending upon the context. One way to give $0 a real value is to execute a getline

command without a variable (see Section 4.9 [Explicit Input with getline], page 67).
Another way is simply to assign a value to $0.

The second point is similar to the first but from the other direction. Traditionally, due
largely to implementation issues, $0 and NF were undefined inside an END rule. The POSIX
standard specifies that NF is available in an END rule. It contains the number of fields from
the last input record. Most probably due to an oversight, the standard does not say that $0
is also preserved, although logically one would think that it should be. In fact, gawk does
preserve the value of $0 for use in END rules. Be aware, however, that Brian Kernighan’s
awk, and possibly other implementations, do not.

The third point follows from the first two. The meaning of ‘print’ inside a BEGIN or
END rule is the same as always: ‘print $0’. If $0 is the null string, then this prints an
empty record. Many long time awk programmers use an unadorned ‘print’ in BEGIN and
END rules, to mean ‘print ""’, relying on $0 being null. Although one might generally get
away with this in BEGIN rules, it is a very bad idea in END rules, at least in gawk. It is also
poor style, since if an empty line is needed in the output, the program should print one
explicitly.

Finally, the next and nextfile statements are not allowed in a BEGIN rule, because the
implicit read-a-record-and-match-against-the-rules loop has not started yet. Similarly, those
statements are not valid in an END rule, since all the input has been read. (See Section 7.4.8
[The next Statement], page 126, and see Section 7.4.9 [The nextfile Statement], page 127.)

7.1.5 The BEGINFILE and ENDFILE Special Patterns

This section describes a gawk-specific feature.

Two special kinds of rule, BEGINFILE and ENDFILE, give you “hooks” into gawk’s
command-line file processing loop. As with the BEGIN and END rules (see Section 7.1.4
[The BEGIN and END Special Patterns], page 116), all BEGINFILE rules in a program are
merged, in the order they are read by gawk, and all ENDFILE rules are merged as well.

1 The original version of awk kept reading and ignoring input until the end of the file was seen.

118 GAWK: Effective AWK Programming

The body of the BEGINFILE rules is executed just before gawk reads the first record from
a file. FILENAME is set to the name of the current file, and FNR is set to zero.

The BEGINFILE rule provides you the opportunity for two tasks that would otherwise be
difficult or impossible to perform:

• You can test if the file is readable. Normally, it is a fatal error if a file named on the
command line cannot be opened for reading. However, you can bypass the fatal error
and move on to the next file on the command line.

You do this by checking if the ERRNO variable is not the empty string; if so, then gawk

was not able to open the file. In this case, your program can execute the nextfile

statement (see Section 7.4.9 [The nextfile Statement], page 127). This causes gawk
to skip the file entirely. Otherwise, gawk exits with the usual fatal error.

• If you have written extensions that modify the record handling (by inserting an “open
hook”), you can invoke them at this point, before gawk has started processing the file.
(This is a very advanced feature, currently used only by the XMLgawk project.)

The ENDFILE rule is called when gawk has finished processing the last record in an input
file. For the last input file, it will be called before any END rules. The ENDFILE rule is
executed even for empty input files.

Normally, when an error occurs when reading input in the normal input processing loop,
the error is fatal. However, if an ENDFILE rule is present, the error becomes non-fatal, and
instead ERRNO is set. This makes it possible to catch and process I/O errors at the level of
the awk program.

The next statement (see Section 7.4.8 [The next Statement], page 126) is not allowed
inside either a BEGINFILE or and ENDFILE rule. The nextfile statement (see Section 7.4.9
[The nextfile Statement], page 127) is allowed only inside a BEGINFILE rule, but not inside
an ENDFILE rule.

The getline statement (see Section 4.9 [Explicit Input with getline], page 67) is
restricted inside both BEGINFILE and ENDFILE. Only the ‘getline variable < file’ form
is allowed.

BEGINFILE and ENDFILE are gawk extensions. In most other awk implementations, or if
gawk is in compatibility mode (see Section 2.2 [Command-Line Options], page 25), they are
not special.

7.1.6 The Empty Pattern

An empty (i.e., nonexistent) pattern is considered to match every input record. For example,
the program:

awk ’{ print $1 }’ BBS-list

prints the first field of every record.

7.2 Using Shell Variables in Programs

awk programs are often used as components in larger programs written in shell. For example,
it is very common to use a shell variable to hold a pattern that the awk program searches
for. There are two ways to get the value of the shell variable into the body of the awk

program.

http://xmlgawk.sourceforge.net

Chapter 7: Patterns, Actions, and Variables 119

The most common method is to use shell quoting to substitute the variable’s value into
the program inside the script. For example, in the following program:

printf "Enter search pattern: "

read pattern

awk "/$pattern/ "’{ nmatches++ }

END { print nmatches, "found" }’ /path/to/data

the awk program consists of two pieces of quoted text that are concatenated together to
form the program. The first part is double-quoted, which allows substitution of the pattern
shell variable inside the quotes. The second part is single-quoted.

Variable substitution via quoting works, but can be potentially messy. It requires a good
understanding of the shell’s quoting rules (see Section 1.1.6 [Shell-Quoting Issues], page 15),
and it’s often difficult to correctly match up the quotes when reading the program.

A better method is to use awk’s variable assignment feature (see Section 6.1.3.2 [Assigning
Variables on the Command Line], page 94) to assign the shell variable’s value to an awk

variable’s value. Then use dynamic regexps to match the pattern (see Section 3.8 [Using
Dynamic Regexps], page 47). The following shows how to redo the previous example using
this technique:

printf "Enter search pattern: "

read pattern

awk -v pat="$pattern" ’$0 ~ pat { nmatches++ }

END { print nmatches, "found" }’ /path/to/data

Now, the awk program is just one single-quoted string. The assignment ‘-v
pat="$pattern"’ still requires double quotes, in case there is whitespace in the value
of $pattern. The awk variable pat could be named pattern too, but that would be
more confusing. Using a variable also provides more flexibility, since the variable can be
used anywhere inside the program—for printing, as an array subscript, or for any other
use—without requiring the quoting tricks at every point in the program.

7.3 Actions

An awk program or script consists of a series of rules and function definitions interspersed.
(Functions are described later. See Section 9.2 [User-Defined Functions], page 175.) A rule
contains a pattern and an action, either of which (but not both) may be omitted. The
purpose of the action is to tell awk what to do once a match for the pattern is found. Thus,
in outline, an awk program generally looks like this:

[pattern] { action }

pattern [{ action }]
...

function name(args) { ... }

...

An action consists of one or more awk statements, enclosed in curly braces (‘{...}’).
Each statement specifies one thing to do. The statements are separated by newlines or
semicolons. The curly braces around an action must be used even if the action contains
only one statement, or if it contains no statements at all. However, if you omit the action
entirely, omit the curly braces as well. An omitted action is equivalent to ‘{ print $0 }’:

120 GAWK: Effective AWK Programming

/foo/ { } match foo, do nothing — empty action
/foo/ match foo, print the record — omitted action

The following types of statements are supported in awk:

Expressions
Call functions or assign values to variables (see Chapter 6 [Expressions],
page 91). Executing this kind of statement simply computes the value of the
expression. This is useful when the expression has side effects (see Section 6.2.3
[Assignment Expressions], page 100).

Control statements
Specify the control flow of awk programs. The awk language gives you C-like
constructs (if, for, while, and do) as well as a few special ones (see Section 7.4
[Control Statements in Actions], page 120).

Compound statements
Consist of one or more statements enclosed in curly braces. A compound state-
ment is used in order to put several statements together in the body of an if,
while, do, or for statement.

Input statements
Use the getline command (see Section 4.9 [Explicit Input with getline],
page 67). Also supplied in awk are the next statement (see Section 7.4.8 [The
next Statement], page 126), and the nextfile statement (see Section 7.4.9
[The nextfile Statement], page 127).

Output statements
Such as print and printf. See Chapter 5 [Printing Output], page 75.

Deletion statements
For deleting array elements. See Section 8.2 [The delete Statement], page 144.

7.4 Control Statements in Actions

Control statements, such as if, while, and so on, control the flow of execution in awk

programs. Most of awk’s control statements are patterned after similar statements in C.

All the control statements start with special keywords, such as if and while, to dis-
tinguish them from simple expressions. Many control statements contain other statements.
For example, the if statement contains another statement that may or may not be exe-
cuted. The contained statement is called the body. To include more than one statement
in the body, group them into a single compound statement with curly braces, separating
them with newlines or semicolons.

7.4.1 The if-else Statement

The if-else statement is awk’s decision-making statement. It looks like this:

if (condition) then-body [else else-body]

The condition is an expression that controls what the rest of the statement does. If the
condition is true, then-body is executed; otherwise, else-body is executed. The else part
of the statement is optional. The condition is considered false if its value is zero or the null
string; otherwise, the condition is true. Refer to the following:

Chapter 7: Patterns, Actions, and Variables 121

if (x % 2 == 0)

print "x is even"

else

print "x is odd"

In this example, if the expression ‘x % 2 == 0’ is true (that is, if the value of x is evenly
divisible by two), then the first print statement is executed; otherwise, the second print

statement is executed. If the else keyword appears on the same line as then-body and
then-body is not a compound statement (i.e., not surrounded by curly braces), then a
semicolon must separate then-body from the else. To illustrate this, the previous example
can be rewritten as:

if (x % 2 == 0) print "x is even"; else

print "x is odd"

If the ‘;’ is left out, awk can’t interpret the statement and it produces a syntax error. Don’t
actually write programs this way, because a human reader might fail to see the else if it is
not the first thing on its line.

7.4.2 The while Statement

In programming, a loop is a part of a program that can be executed two or more times in
succession. The while statement is the simplest looping statement in awk. It repeatedly
executes a statement as long as a condition is true. For example:

while (condition)

body

body is a statement called the body of the loop, and condition is an expression that controls
how long the loop keeps running. The first thing the while statement does is test the
condition. If the condition is true, it executes the statement body. After body has been
executed, condition is tested again, and if it is still true, body is executed again. This
process repeats until the condition is no longer true. If the condition is initially false, the
body of the loop is never executed and awk continues with the statement following the loop.
This example prints the first three fields of each record, one per line:

awk ’{

i = 1

while (i <= 3) {

print $i

i++

}

}’ inventory-shipped

The body of this loop is a compound statement enclosed in braces, containing two state-
ments. The loop works in the following manner: first, the value of i is set to one. Then,
the while statement tests whether i is less than or equal to three. This is true when i

equals one, so the i-th field is printed. Then the ‘i++’ increments the value of i and the
loop repeats. The loop terminates when i reaches four.

A newline is not required between the condition and the body; however using one makes
the program clearer unless the body is a compound statement or else is very simple. The
newline after the open-brace that begins the compound statement is not required either,
but the program is harder to read without it.

122 GAWK: Effective AWK Programming

7.4.3 The do-while Statement

The do loop is a variation of the while looping statement. The do loop executes the body
once and then repeats the body as long as the condition is true. It looks like this:

do

body

while (condition)

Even if the condition is false at the start, the body is executed at least once (and only
once, unless executing body makes condition true). Contrast this with the corresponding
while statement:

while (condition)

body

This statement does not execute body even once if the condition is false to begin with. The
following is an example of a do statement:

{

i = 1

do {

print $0

i++

} while (i <= 10)

}

This program prints each input record 10 times. However, it isn’t a very realistic example,
since in this case an ordinary while would do just as well. This situation reflects actual
experience; only occasionally is there a real use for a do statement.

7.4.4 The for Statement

The for statement makes it more convenient to count iterations of a loop. The general
form of the for statement looks like this:

for (initialization; condition; increment)

body

The initialization, condition, and increment parts are arbitrary awk expressions, and body
stands for any awk statement.

The for statement starts by executing initialization. Then, as long as the condition
is true, it repeatedly executes body and then increment. Typically, initialization sets a
variable to either zero or one, increment adds one to it, and condition compares it against
the desired number of iterations. For example:

awk ’{

for (i = 1; i <= 3; i++)

print $i

}’ inventory-shipped

This prints the first three fields of each input record, with one field per line.

It isn’t possible to set more than one variable in the initialization part without using
a multiple assignment statement such as ‘x = y = 0’. This makes sense only if all the ini-
tial values are equal. (But it is possible to initialize additional variables by writing their
assignments as separate statements preceding the for loop.)

Chapter 7: Patterns, Actions, and Variables 123

The same is true of the increment part. Incrementing additional variables requires
separate statements at the end of the loop. The C compound expression, using C’s comma
operator, is useful in this context but it is not supported in awk.

Most often, increment is an increment expression, as in the previous example. But this
is not required; it can be any expression whatsoever. For example, the following statement
prints all the powers of two between 1 and 100:

for (i = 1; i <= 100; i *= 2)

print i

If there is nothing to be done, any of the three expressions in the parentheses following
the for keyword may be omitted. Thus, ‘for (; x > 0;)’ is equivalent to ‘while (x > 0)’.
If the condition is omitted, it is treated as true, effectively yielding an infinite loop (i.e., a
loop that never terminates).

In most cases, a for loop is an abbreviation for a while loop, as shown here:

initialization

while (condition) {

body

increment

}

The only exception is when the continue statement (see Section 7.4.7 [The continue

Statement], page 125) is used inside the loop. Changing a for statement to a while

statement in this way can change the effect of the continue statement inside the loop.

The awk language has a for statement in addition to a while statement because a for

loop is often both less work to type and more natural to think of. Counting the number
of iterations is very common in loops. It can be easier to think of this counting as part of
looping rather than as something to do inside the loop.

There is an alternate version of the for loop, for iterating over all the indices of an array:

for (i in array)

do something with array[i]

See Section 8.1.5 [Scanning All Elements of an Array], page 140, for more information on
this version of the for loop.

7.4.5 The switch Statement

The switch statement allows the evaluation of an expression and the execution of statements
based on a case match. Case statements are checked for a match in the order they are
defined. If no suitable case is found, the default section is executed, if supplied.

Each case contains a single constant, be it numeric, string, or regexp. The switch

expression is evaluated, and then each case’s constant is compared against the result in
turn. The type of constant determines the comparison: numeric or string do the usual
comparisons. A regexp constant does a regular expression match against the string value
of the original expression. The general form of the switch statement looks like this:

switch (expression) {

case value or regular expression:

case-body

default:

124 GAWK: Effective AWK Programming

default-body

}

Control flow in the switch statement works as it does in C. Once a match to a given
case is made, the case statement bodies execute until a break, continue, next, nextfile
or exit is encountered, or the end of the switch statement itself. For example:

switch (NR * 2 + 1) {

case 3:

case "11":

print NR - 1

break

case /2[[:digit:]]+/:

print NR

default:

print NR + 1

case -1:

print NR * -1

}

Note that if none of the statements specified above halt execution of a matched case

statement, execution falls through to the next case until execution halts. In the above
example, for any case value starting with ‘2’ followed by one or more digits, the print

statement is executed and then falls through into the default section, executing its print
statement. In turn, the −1 case will also be executed since the default does not halt
execution.

This switch statement is a gawk extension. If gawk is in compatibility mode (see
Section 2.2 [Command-Line Options], page 25), it is not available.

7.4.6 The break Statement

The break statement jumps out of the innermost for, while, or do loop that encloses it.
The following example finds the smallest divisor of any integer, and also identifies prime
numbers:

find smallest divisor of num

{

num = $1

for (div = 2; div * div <= num; div++) {

if (num % div == 0)

break

}

if (num % div == 0)

printf "Smallest divisor of %d is %d\n", num, div

else

printf "%d is prime\n", num

}

Chapter 7: Patterns, Actions, and Variables 125

When the remainder is zero in the first if statement, awk immediately breaks out of the
containing for loop. This means that awk proceeds immediately to the statement following
the loop and continues processing. (This is very different from the exit statement, which
stops the entire awk program. See Section 7.4.10 [The exit Statement], page 128.)

The following program illustrates how the condition of a for or while statement could
be replaced with a break inside an if:

find smallest divisor of num

{

num = $1

for (div = 2; ; div++) {

if (num % div == 0) {

printf "Smallest divisor of %d is %d\n", num, div

break

}

if (div * div > num) {

printf "%d is prime\n", num

break

}

}

}

The break statement is also used to break out of the switch statement. This is discussed
in Section 7.4.5 [The switch Statement], page 123.

The break statement has no meaning when used outside the body of a loop or switch.
However, although it was never documented, historical implementations of awk treated the
break statement outside of a loop as if it were a next statement (see Section 7.4.8 [The
next Statement], page 126). Recent versions of Brian Kernighan’s awk no longer allow
this usage, nor does gawk.

7.4.7 The continue Statement

Similar to break, the continue statement is used only inside for, while, and do loops.
It skips over the rest of the loop body, causing the next cycle around the loop to begin
immediately. Contrast this with break, which jumps out of the loop altogether.

The continue statement in a for loop directs awk to skip the rest of the body of the loop
and resume execution with the increment-expression of the for statement. The following
program illustrates this fact:

BEGIN {

for (x = 0; x <= 20; x++) {

if (x == 5)

continue

printf "%d ", x

}

print ""

}

126 GAWK: Effective AWK Programming

This program prints all the numbers from 0 to 20—except for 5, for which the printf is
skipped. Because the increment ‘x++’ is not skipped, x does not remain stuck at 5. Contrast
the for loop from the previous example with the following while loop:

BEGIN {

x = 0

while (x <= 20) {

if (x == 5)

continue

printf "%d ", x

x++

}

print ""

}

This program loops forever once x reaches 5.

The continue statement has no special meaning with respect to the switch statement,
nor does it have any meaning when used outside the body of a loop. Historical versions
of awk treated a continue statement outside a loop the same way they treated a break

statement outside a loop: as if it were a next statement (see Section 7.4.8 [The next

Statement], page 126). Recent versions of Brian Kernighan’s awk no longer work this way,
nor does gawk.

7.4.8 The next Statement

The next statement forces awk to immediately stop processing the current record and go
on to the next record. This means that no further rules are executed for the current record,
and the rest of the current rule’s action isn’t executed.

Contrast this with the effect of the getline function (see Section 4.9 [Explicit Input
with getline], page 67). That also causes awk to read the next record immediately, but it
does not alter the flow of control in any way (i.e., the rest of the current action executes
with a new input record).

At the highest level, awk program execution is a loop that reads an input record and
then tests each rule’s pattern against it. If you think of this loop as a for statement whose
body contains the rules, then the next statement is analogous to a continue statement. It
skips to the end of the body of this implicit loop and executes the increment (which reads
another record).

For example, suppose an awk program works only on records with four fields, and it
shouldn’t fail when given bad input. To avoid complicating the rest of the program, write
a “weed out” rule near the beginning, in the following manner:

NF != 4 {

err = sprintf("%s:%d: skipped: NF != 4\n", FILENAME, FNR)

print err > "/dev/stderr"

next

}

Because of the next statement, the program’s subsequent rules won’t see the bad record.
The error message is redirected to the standard error output stream, as error messages
should be. For more detail see Section 5.7 [Special File Names in gawk], page 86.

Chapter 7: Patterns, Actions, and Variables 127

If the next statement causes the end of the input to be reached, then the code in any
END rules is executed. See Section 7.1.4 [The BEGIN and END Special Patterns], page 116.

The next statement is not allowed inside BEGINFILE and ENDFILE rules. See Section 7.1.5
[The BEGINFILE and ENDFILE Special Patterns], page 117.

According to the POSIX standard, the behavior is undefined if the next statement is
used in a BEGIN or END rule. gawk treats it as a syntax error. Although POSIX permits it,
some other awk implementations don’t allow the next statement inside function bodies (see
Section 9.2 [User-Defined Functions], page 175). Just as with any other next statement, a
next statement inside a function body reads the next record and starts processing it with
the first rule in the program.

7.4.9 The nextfile Statement

The nextfile statement is similar to the next statement. However, instead of abandoning
processing of the current record, the nextfile statement instructs awk to stop processing
the current data file.

Upon execution of the nextfile statement, FILENAME is updated to the name of the
next data file listed on the command line, FNR is reset to one, and processing starts over
with the first rule in the program. If the nextfile statement causes the end of the input
to be reached, then the code in any END rules is executed. An exception to this is when
nextfile is invoked during execution of any statement in an END rule; In this case, it causes
the program to stop immediately. See Section 7.1.4 [The BEGIN and END Special Patterns],
page 116.

The nextfile statement is useful when there are many data files to process but it isn’t
necessary to process every record in every file. Without nextfile, in order to move on to
the next data file, a program would have to continue scanning the unwanted records. The
nextfile statement accomplishes this much more efficiently.

In gawk, execution of nextfile causes additional things to happen: any ENDFILE rules
are executed except in the case as mentioned below, ARGIND is incremented, and any
BEGINFILE rules are executed (ARGIND hasn’t been introduced yet. See Section 7.5 [Built-in
Variables], page 128.)

With gawk, nextfile is useful inside a BEGINFILE rule to skip over a file that would
otherwise cause gawk to exit with a fatal error. In this case, ENDFILE rules are not executed.
See Section 7.1.5 [The BEGINFILE and ENDFILE Special Patterns], page 117.

While one might think that ‘close(FILENAME)’ would accomplish the same as nextfile,
this isn’t true. close() is reserved for closing files, pipes, and coprocesses that are opened
with redirections. It is not related to the main processing that awk does with the files listed
in ARGV.

NOTE: For many years, nextfile was a gawk extension. As of September,
2012, it was accepted for inclusion into the POSIX standard. See the Austin
Group website.

The current version of the Brian Kernighan’s awk (see Section B.5 [Other Freely Avail-
able awk Implementations], page 325) also supports nextfile. However, it doesn’t allow
the nextfile statement inside function bodies (see Section 9.2 [User-Defined Functions],
page 175). gawk does; a nextfile inside a function body reads the next record and starts
processing it with the first rule in the program, just as any other nextfile statement.

http://austingroupbugs.net/view.php?id=607
http://austingroupbugs.net/view.php?id=607

128 GAWK: Effective AWK Programming

7.4.10 The exit Statement

The exit statement causes awk to immediately stop executing the current rule and to stop
processing input; any remaining input is ignored. The exit statement is written as follows:

exit [return code]

When an exit statement is executed from a BEGIN rule, the program stops processing
everything immediately. No input records are read. However, if an END rule is present, as
part of executing the exit statement, the END rule is executed (see Section 7.1.4 [The BEGIN
and END Special Patterns], page 116). If exit is used in the body of an END rule, it causes
the program to stop immediately.

An exit statement that is not part of a BEGIN or END rule stops the execution of any
further automatic rules for the current record, skips reading any remaining input records,
and executes the END rule if there is one. Any ENDFILE rules are also skipped; they are not
executed.

In such a case, if you don’t want the END rule to do its job, set a variable to nonzero before
the exit statement and check that variable in the END rule. See Section 12.2.2 [Assertions],
page 216, for an example that does this.

If an argument is supplied to exit, its value is used as the exit status code for the awk

process. If no argument is supplied, exit causes awk to return a “success” status. In the
case where an argument is supplied to a first exit statement, and then exit is called a
second time from an END rule with no argument, awk uses the previously supplied exit value.
See Section 2.6 [gawk’s Exit Status], page 33, for more information.

For example, suppose an error condition occurs that is difficult or impossible to handle.
Conventionally, programs report this by exiting with a nonzero status. An awk program
can do this using an exit statement with a nonzero argument, as shown in the following
example:

BEGIN {

if (("date" | getline date_now) <= 0) {

print "Can’t get system date" > "/dev/stderr"

exit 1

}

print "current date is", date_now

close("date")

}

NOTE: For full portability, exit values should be between zero and 126, inclu-
sive. Negative values, and values of 127 or greater, may not produce consistent
results across different operating systems.

7.5 Built-in Variables

Most awk variables are available to use for your own purposes; they never change unless
your program assigns values to them, and they never affect anything unless your program
examines them. However, a few variables in awk have special built-in meanings. awk

examines some of these automatically, so that they enable you to tell awk how to do certain
things. Others are set automatically by awk, so that they carry information from the internal
workings of awk to your program.

Chapter 7: Patterns, Actions, and Variables 129

This section documents all the built-in variables of gawk, most of which are also docu-
mented in the chapters describing their areas of activity.

7.5.1 Built-in Variables That Control awk

The following is an alphabetical list of variables that you can change to control how awk does
certain things. The variables that are specific to gawk are marked with a pound sign (‘#’).

BINMODE # On non-POSIX systems, this variable specifies use of binary mode for all I/O.
Numeric values of one, two, or three specify that input files, output files, or
all files, respectively, should use binary I/O. A numeric value less than zero
is treated as zero, and a numeric value greater than three is treated as three.
Alternatively, string values of "r" or "w" specify that input files and output files,
respectively, should use binary I/O. A string value of "rw" or "wr" indicates
that all files should use binary I/O. Any other string value is treated the same as
"rw", but causes gawk to generate a warning message. BINMODE is described in
more detail in Section B.3.1.4 [Using gawk on PC Operating Systems], page 321.

This variable is a gawk extension. In other awk implementations (except mawk,
see Section B.5 [Other Freely Available awk Implementations], page 325), or
if gawk is in compatibility mode (see Section 2.2 [Command-Line Options],
page 25), it is not special.

CONVFMT This string controls conversion of numbers to strings (see Section 6.1.4 [Con-
version of Strings and Numbers], page 95). It works by being passed, in effect,
as the first argument to the sprintf() function (see Section 9.1.3 [String-
Manipulation Functions], page 153). Its default value is "%.6g". CONVFMT was
introduced by the POSIX standard.

FIELDWIDTHS #

This is a space-separated list of columns that tells gawk how to split input with
fixed columnar boundaries. Assigning a value to FIELDWIDTHS overrides the use
of FS and FPAT for field splitting. See Section 4.6 [Reading Fixed-Width Data],
page 61, for more information.

If gawk is in compatibility mode (see Section 2.2 [Command-Line Options],
page 25), then FIELDWIDTHS has no special meaning, and field-splitting opera-
tions occur based exclusively on the value of FS.

FPAT # This is a regular expression (as a string) that tells gawk to create the fields
based on text that matches the regular expression. Assigning a value to FPAT

overrides the use of FS and FIELDWIDTHS for field splitting. See Section 4.7
[Defining Fields By Content], page 63, for more information.

If gawk is in compatibility mode (see Section 2.2 [Command-Line Options],
page 25), then FPAT has no special meaning, and field-splitting operations occur
based exclusively on the value of FS.

FS This is the input field separator (see Section 4.5 [Specifying How Fields Are Sep-
arated], page 56). The value is a single-character string or a multi-character reg-
ular expression that matches the separations between fields in an input record.
If the value is the null string (""), then each character in the record becomes a
separate field. (This behavior is a gawk extension. POSIX awk does not specify

130 GAWK: Effective AWK Programming

the behavior when FS is the null string. Nonetheless, some other versions of
awk also treat "" specially.)

The default value is " ", a string consisting of a single space. As a special
exception, this value means that any sequence of spaces, TABs, and/or newlines
is a single separator.2 It also causes spaces, TABs, and newlines at the beginning
and end of a record to be ignored.

You can set the value of FS on the command line using the -F option:

awk -F, ’program’ input-files

If gawk is using FIELDWIDTHS or FPAT for field splitting, assigning a value to FS

causes gawk to return to the normal, FS-based field splitting. An easy way to
do this is to simply say ‘FS = FS’, perhaps with an explanatory comment.

IGNORECASE #

If IGNORECASE is nonzero or non-null, then all string comparisons and all regular
expression matching are case independent. Thus, regexp matching with ‘~’
and ‘!~’, as well as the gensub(), gsub(), index(), match(), patsplit(),
split(), and sub() functions, record termination with RS, and field splitting
with FS and FPAT, all ignore case when doing their particular regexp operations.
However, the value of IGNORECASE does not affect array subscripting and it
does not affect field splitting when using a single-character field separator. See
Section 3.6 [Case Sensitivity in Matching], page 45.

If gawk is in compatibility mode (see Section 2.2 [Command-Line Options],
page 25), then IGNORECASE has no special meaning. Thus, string and regexp
operations are always case-sensitive.

LINT # When this variable is true (nonzero or non-null), gawk behaves as if the --lint
command-line option is in effect. (see Section 2.2 [Command-Line Options],
page 25). With a value of "fatal", lint warnings become fatal errors. With
a value of "invalid", only warnings about things that are actually invalid are
issued. (This is not fully implemented yet.) Any other true value prints nonfatal
warnings. Assigning a false value to LINT turns off the lint warnings.

This variable is a gawk extension. It is not special in other awk implementations.
Unlike the other special variables, changing LINT does affect the production of
lint warnings, even if gawk is in compatibility mode. Much as the --lint

and --traditional options independently control different aspects of gawk’s
behavior, the control of lint warnings during program execution is independent
of the flavor of awk being executed.

OFMT This string controls conversion of numbers to strings (see Section 6.1.4 [Conver-
sion of Strings and Numbers], page 95) for printing with the print statement.
It works by being passed as the first argument to the sprintf() function (see
Section 9.1.3 [String-Manipulation Functions], page 153). Its default value is
"%.6g". Earlier versions of awk also used OFMT to specify the format for con-
verting numbers to strings in general expressions; this is now done by CONVFMT.

2 In POSIX awk, newline does not count as whitespace.

Chapter 7: Patterns, Actions, and Variables 131

OFS This is the output field separator (see Section 5.3 [Output Separators], page 77).
It is output between the fields printed by a print statement. Its default value
is " ", a string consisting of a single space.

ORS This is the output record separator. It is output at the end of every print

statement. Its default value is "\n", the newline character. (See Section 5.3
[Output Separators], page 77.)

RS This is awk’s input record separator. Its default value is a string containing a
single newline character, which means that an input record consists of a single
line of text. It can also be the null string, in which case records are separated
by runs of blank lines. If it is a regexp, records are separated by matches of the
regexp in the input text. (See Section 4.1 [How Input Is Split into Records],
page 49.)

The ability for RS to be a regular expression is a gawk extension. In most
other awk implementations, or if gawk is in compatibility mode (see Section 2.2
[Command-Line Options], page 25), just the first character of RS’s value is used.

SUBSEP This is the subscript separator. It has the default value of "\034" and is
used to separate the parts of the indices of a multidimensional array. Thus,
the expression foo["A", "B"] really accesses foo["A\034B"] (see Section 8.5
[Multidimensional Arrays], page 146).

TEXTDOMAIN #

This variable is used for internationalization of programs at the awk level. It
sets the default text domain for specially marked string constants in the source
text, as well as for the dcgettext(), dcngettext() and bindtextdomain()

functions (see Chapter 10 [Internationalization with gawk], page 189). The
default value of TEXTDOMAIN is "messages".

This variable is a gawk extension. In other awk implementations, or if gawk is
in compatibility mode (see Section 2.2 [Command-Line Options], page 25), it
is not special.

7.5.2 Built-in Variables That Convey Information

The following is an alphabetical list of variables that awk sets automatically on certain
occasions in order to provide information to your program. The variables that are specific
to gawk are marked with a pound sign (‘#’).

ARGC, ARGV
The command-line arguments available to awk programs are stored in an ar-
ray called ARGV. ARGC is the number of command-line arguments present. See
Section 2.3 [Other Command-Line Arguments], page 30. Unlike most awk ar-
rays, ARGV is indexed from 0 to ARGC − 1. In the following example:

$ awk ’BEGIN {

> for (i = 0; i < ARGC; i++)

> print ARGV[i]

> }’ inventory-shipped BBS-list

a awk

a inventory-shipped

132 GAWK: Effective AWK Programming

a BBS-list

ARGV[0] contains ‘awk’, ARGV[1] contains ‘inventory-shipped’, and ARGV[2]

contains ‘BBS-list’. The value of ARGC is three, one more than the index of
the last element in ARGV, because the elements are numbered from zero.

The names ARGC and ARGV, as well as the convention of indexing the array
from 0 to ARGC − 1, are derived from the C language’s method of accessing
command-line arguments.

The value of ARGV[0] can vary from system to system. Also, you should note
that the program text is not included in ARGV, nor are any of awk’s command-
line options. See Section 7.5.3 [Using ARGC and ARGV], page 135, for information
about how awk uses these variables.

ARGIND # The index in ARGV of the current file being processed. Every time gawk opens
a new data file for processing, it sets ARGIND to the index in ARGV of the file
name. When gawk is processing the input files, ‘FILENAME == ARGV[ARGIND]’
is always true.

This variable is useful in file processing; it allows you to tell how far along you
are in the list of data files as well as to distinguish between successive instances
of the same file name on the command line.

While you can change the value of ARGIND within your awk program, gawk

automatically sets it to a new value when the next file is opened.

This variable is a gawk extension. In other awk implementations, or if gawk is
in compatibility mode (see Section 2.2 [Command-Line Options], page 25), it
is not special.

ENVIRON An associative array containing the values of the environment. The array in-
dices are the environment variable names; the elements are the values of the
particular environment variables. For example, ENVIRON["HOME"] might be
/home/arnold. Changing this array does not affect the environment passed on
to any programs that awk may spawn via redirection or the system() function.

Some operating systems may not have environment variables. On such systems,
the ENVIRON array is empty (except for ENVIRON["AWKPATH"], see Section 2.5.1
[The AWKPATH Environment Variable], page 32).

ERRNO # If a system error occurs during a redirection for getline, during a read for
getline, or during a close() operation, then ERRNO contains a string describ-
ing the error.

In addition, gawk clears ERRNO before opening each command-line input file.
This enables checking if the file is readable inside a BEGINFILE pattern (see
Section 7.1.5 [The BEGINFILE and ENDFILE Special Patterns], page 117).

Otherwise, ERRNO works similarly to the C variable errno. Except for the case
just mentioned, gawk never clears it (sets it to zero or ""). Thus, you should
only expect its value to be meaningful when an I/O operation returns a failure
value, such as getline returning −1. You are, of course, free to clear it yourself
before doing an I/O operation.

Chapter 7: Patterns, Actions, and Variables 133

This variable is a gawk extension. In other awk implementations, or if gawk is
in compatibility mode (see Section 2.2 [Command-Line Options], page 25), it
is not special.

FILENAME The name of the file that awk is currently reading. When no data files are
listed on the command line, awk reads from the standard input and FILENAME

is set to "-". FILENAME is changed each time a new file is read (see Chapter 4
[Reading Input Files], page 49). Inside a BEGIN rule, the value of FILENAME is
"", since there are no input files being processed yet.3 Note, though, that
using getline (see Section 4.9 [Explicit Input with getline], page 67) inside
a BEGIN rule can give FILENAME a value.

FNR The current record number in the current file. FNR is incremented each time a
new record is read (see Section 4.1 [How Input Is Split into Records], page 49).
It is reinitialized to zero each time a new input file is started.

NF The number of fields in the current input record. NF is set each time a new
record is read, when a new field is created or when $0 changes (see Section 4.2
[Examining Fields], page 52).

Unlike most of the variables described in this section, assigning a value to NF has
the potential to affect awk’s internal workings. In particular, assignments to NF

can be used to create or remove fields from the current record. See Section 4.4
[Changing the Contents of a Field], page 54.

NR The number of input records awk has processed since the beginning of the
program’s execution (see Section 4.1 [How Input Is Split into Records], page 49).
NR is incremented each time a new record is read.

PROCINFO #

The elements of this array provide access to information about the running awk

program. The following elements (listed alphabetically) are guaranteed to be
available:

PROCINFO["egid"]

The value of the getegid() system call.

PROCINFO["euid"]

The value of the geteuid() system call.

PROCINFO["FS"]

This is "FS" if field splitting with FS is in effect, "FIELDWIDTHS"
if field splitting with FIELDWIDTHS is in effect, or "FPAT" if field
matching with FPAT is in effect.

PROCINFO["gid"]

The value of the getgid() system call.

PROCINFO["pgrpid"]

The process group ID of the current process.

3 Some early implementations of Unix awk initialized FILENAME to "-", even if there were data files to be
processed. This behavior was incorrect and should not be relied upon in your programs.

134 GAWK: Effective AWK Programming

PROCINFO["pid"]

The process ID of the current process.

PROCINFO["ppid"]

The parent process ID of the current process.

PROCINFO["sorted_in"]

If this element exists in PROCINFO, its value controls the order in
which array indices will be processed by ‘for (index in array)

...’ loops. Since this is an advanced feature, we defer the full
description until later; see Section 8.1.5 [Scanning All Elements of
an Array], page 140.

PROCINFO["strftime"]

The default time format string for strftime(). Assigning a new
value to this element changes the default. See Section 9.1.5 [Time
Functions], page 168.

PROCINFO["uid"]

The value of the getuid() system call.

PROCINFO["version"]

The version of gawk.

On some systems, there may be elements in the array, "group1" through
"groupN" for some N. N is the number of supplementary groups that the
process has. Use the in operator to test for these elements (see Section 8.1.2
[Referring to an Array Element], page 138).

The PROCINFO array is also used to cause coprocesses to communicate over
pseudo-ttys instead of through two-way pipes; this is discussed further in
Section 11.3 [Two-Way Communications with Another Process], page 205.

This array is a gawk extension. In other awk implementations, or if gawk is in
compatibility mode (see Section 2.2 [Command-Line Options], page 25), it is
not special.

RLENGTH The length of the substring matched by the match() function (see Section 9.1.3
[String-Manipulation Functions], page 153). RLENGTH is set by invoking the
match() function. Its value is the length of the matched string, or −1 if no
match is found.

RSTART The start-index in characters of the substring that is matched by the match()

function (see Section 9.1.3 [String-Manipulation Functions], page 153). RSTART
is set by invoking the match() function. Its value is the position of the string
where the matched substring starts, or zero if no match was found.

RT # This is set each time a record is read. It contains the input text that matched
the text denoted by RS, the record separator.

This variable is a gawk extension. In other awk implementations, or if gawk is
in compatibility mode (see Section 2.2 [Command-Line Options], page 25), it
is not special.

Chapter 7: Patterns, Actions, and Variables 135

Advanced Notes: Changing NR and FNR

awk increments NR and FNR each time it reads a record, instead of setting them to the
absolute value of the number of records read. This means that a program can change these
variables and their new values are incremented for each record. The following example
shows this:

$ echo ’1

> 2

> 3

> 4’ | awk ’NR == 2 { NR = 17 }

> { print NR }’

a 1

a 17

a 18

a 19

Before FNR was added to the awk language (see Section A.1 [Major Changes Between V7 and
SVR3.1], page 303), many awk programs used this feature to track the number of records
in a file by resetting NR to zero when FILENAME changed.

7.5.3 Using ARGC and ARGV

Section 7.5.2 [Built-in Variables That Convey Information], page 131, presented the follow-
ing program describing the information contained in ARGC and ARGV:

$ awk ’BEGIN {

> for (i = 0; i < ARGC; i++)

> print ARGV[i]

> }’ inventory-shipped BBS-list

a awk

a inventory-shipped

a BBS-list

In this example, ARGV[0] contains ‘awk’, ARGV[1] contains ‘inventory-shipped’, and
ARGV[2] contains ‘BBS-list’. Notice that the awk program is not entered in ARGV. The
other command-line options, with their arguments, are also not entered. This includes
variable assignments done with the -v option (see Section 2.2 [Command-Line Options],
page 25). Normal variable assignments on the command line are treated as arguments and
do show up in the ARGV array. Given the following program in a file named showargs.awk:

BEGIN {

printf "A=%d, B=%d\n", A, B

for (i = 0; i < ARGC; i++)

printf "\tARGV[%d] = %s\n", i, ARGV[i]

}

END { printf "A=%d, B=%d\n", A, B }

Running it produces the following:

$ awk -v A=1 -f showargs.awk B=2 /dev/null

a A=1, B=0

a ARGV[0] = awk

a ARGV[1] = B=2

136 GAWK: Effective AWK Programming

a ARGV[2] = /dev/null

a A=1, B=2

A program can alter ARGC and the elements of ARGV. Each time awk reaches the end of
an input file, it uses the next element of ARGV as the name of the next input file. By storing
a different string there, a program can change which files are read. Use "-" to represent
the standard input. Storing additional elements and incrementing ARGC causes additional
files to be read.

If the value of ARGC is decreased, that eliminates input files from the end of the list. By
recording the old value of ARGC elsewhere, a program can treat the eliminated arguments
as something other than file names.

To eliminate a file from the middle of the list, store the null string ("") into ARGV in
place of the file’s name. As a special feature, awk ignores file names that have been replaced
with the null string. Another option is to use the delete statement to remove elements
from ARGV (see Section 8.2 [The delete Statement], page 144).

All of these actions are typically done in the BEGIN rule, before actual processing of
the input begins. See Section 13.2.4 [Splitting a Large File into Pieces], page 254, and
see Section 13.2.5 [Duplicating Output into Multiple Files], page 256, for examples of each
way of removing elements from ARGV. The following fragment processes ARGV in order to
examine, and then remove, command-line options:

BEGIN {

for (i = 1; i < ARGC; i++) {

if (ARGV[i] == "-v")

verbose = 1

else if (ARGV[i] == "-q")

debug = 1

else if (ARGV[i] ~ /^-./) {

e = sprintf("%s: unrecognized option -- %c",

ARGV[0], substr(ARGV[i], 2, 1))

print e > "/dev/stderr"

} else

break

delete ARGV[i]

}

}

To actually get the options into the awk program, end the awk options with -- and then
supply the awk program’s options, in the following manner:

awk -f myprog -- -v -q file1 file2 ...

This is not necessary in gawk. Unless --posix has been specified, gawk silently puts
any unrecognized options into ARGV for the awk program to deal with. As soon as it sees
an unknown option, gawk stops looking for other options that it might otherwise recognize.
The previous example with gawk would be:

gawk -f myprog -q -v file1 file2 ...

Because -q is not a valid gawk option, it and the following -v are passed on to the awk

program. (See Section 12.4 [Processing Command-Line Options], page 227, for an awk

library function that parses command-line options.)

Chapter 8: Arrays in awk 137

8 Arrays in awk

An array is a table of values called elements. The elements of an array are distinguished
by their indices. Indices may be either numbers or strings.

This chapter describes how arrays work in awk, how to use array elements, how to scan
through every element in an array, and how to remove array elements. It also describes
how awk simulates multidimensional arrays, as well as some of the less obvious points about
array usage. The chapter moves on to discuss gawk’s facility for sorting arrays, and ends
with a brief description of gawk’s ability to support true multidimensional arrays.

awk maintains a single set of names that may be used for naming variables, arrays, and
functions (see Section 9.2 [User-Defined Functions], page 175). Thus, you cannot have a
variable and an array with the same name in the same awk program.

8.1 The Basics of Arrays

This section presents the basics: working with elements in arrays one at a time, and travers-
ing all of the elements in an array.

8.1.1 Introduction to Arrays

Doing linear scans over an associative array is like trying to club someone to
death with a loaded Uzi.
Larry Wall

The awk language provides one-dimensional arrays for storing groups of related strings
or numbers. Every awk array must have a name. Array names have the same syntax as
variable names; any valid variable name would also be a valid array name. But one name
cannot be used in both ways (as an array and as a variable) in the same awk program.

Arrays in awk superficially resemble arrays in other programming languages, but there
are fundamental differences. In awk, it isn’t necessary to specify the size of an array before
starting to use it. Additionally, any number or string in awk, not just consecutive integers,
may be used as an array index.

In most other languages, arrays must be declared before use, including a specification of
how many elements or components they contain. In such languages, the declaration causes
a contiguous block of memory to be allocated for that many elements. Usually, an index in
the array must be a positive integer. For example, the index zero specifies the first element
in the array, which is actually stored at the beginning of the block of memory. Index one
specifies the second element, which is stored in memory right after the first element, and
so on. It is impossible to add more elements to the array, because it has room only for as
many elements as given in the declaration. (Some languages allow arbitrary starting and
ending indices—e.g., ‘15 .. 27’—but the size of the array is still fixed when the array is
declared.)

A contiguous array of four elements might look like the following example, conceptually,
if the element values are 8, "foo", "", and 30:

8 "foo" "" 30 Value

0 1 2 3 Index

138 GAWK: Effective AWK Programming

Only the values are stored; the indices are implicit from the order of the values. Here, 8 is
the value at index zero, because 8 appears in the position with zero elements before it.

Arrays in awk are different—they are associative. This means that each array is a
collection of pairs: an index and its corresponding array element value:

Index 3 Value 30

Index 1 Value "foo"

Index 0 Value 8

Index 2 Value ""

The pairs are shown in jumbled order because their order is irrelevant.

One advantage of associative arrays is that new pairs can be added at any time. For
example, suppose a tenth element is added to the array whose value is "number ten". The
result is:

Index 10 Value "number ten"

Index 3 Value 30

Index 1 Value "foo"

Index 0 Value 8

Index 2 Value ""

Now the array is sparse, which just means some indices are missing. It has elements 0–3
and 10, but doesn’t have elements 4, 5, 6, 7, 8, or 9.

Another consequence of associative arrays is that the indices don’t have to be positive
integers. Any number, or even a string, can be an index. For example, the following is an
array that translates words from English to French:

Index "dog" Value "chien"

Index "cat" Value "chat"

Index "one" Value "un"

Index 1 Value "un"

Here we decided to translate the number one in both spelled-out and numeric form—thus
illustrating that a single array can have both numbers and strings as indices. In fact,
array subscripts are always strings; this is discussed in more detail in Section 8.3 [Using
Numbers to Subscript Arrays], page 145. Here, the number 1 isn’t double-quoted, since awk
automatically converts it to a string.

The value of IGNORECASE has no effect upon array subscripting. The identical string value
used to store an array element must be used to retrieve it. When awk creates an array (e.g.,
with the split() built-in function), that array’s indices are consecutive integers starting
at one. (See Section 9.1.3 [String-Manipulation Functions], page 153.)

awk’s arrays are efficient—the time to access an element is independent of the number
of elements in the array.

8.1.2 Referring to an Array Element

The principal way to use an array is to refer to one of its elements. An array reference is
an expression as follows:

array[index-expression]

Here, array is the name of an array. The expression index-expression is the index of the
desired element of the array.

Chapter 8: Arrays in awk 139

The value of the array reference is the current value of that array element. For example,
foo[4.3] is an expression for the element of array foo at index ‘4.3’.

A reference to an array element that has no recorded value yields a value of "", the null
string. This includes elements that have not been assigned any value as well as elements
that have been deleted (see Section 8.2 [The delete Statement], page 144).

NOTE: A reference to an element that does not exist automatically creates
that array element, with the null string as its value. (In some cases, this is
unfortunate, because it might waste memory inside awk.)

Novice awk programmers often make the mistake of checking if an element exists
by checking if the value is empty:

Check if "foo" exists in a: Incorrect!
if (a["foo"] != "") ...

This is incorrect, since this will create a["foo"] if it didn’t exist before!

To determine whether an element exists in an array at a certain index, use the following
expression:

ind in array

This expression tests whether the particular index ind exists, without the side effect of cre-
ating that element if it is not present. The expression has the value one (true) if array[ind]
exists and zero (false) if it does not exist. For example, this statement tests whether the
array frequencies contains the index ‘2’:

if (2 in frequencies)

print "Subscript 2 is present."

Note that this is not a test of whether the array frequencies contains an element whose
value is two. There is no way to do that except to scan all the elements. Also, this does
not create frequencies[2], while the following (incorrect) alternative does:

if (frequencies[2] != "")

print "Subscript 2 is present."

8.1.3 Assigning Array Elements

Array elements can be assigned values just like awk variables:

array[index-expression] = value

array is the name of an array. The expression index-expression is the index of the element
of the array that is assigned a value. The expression value is the value to assign to that
element of the array.

8.1.4 Basic Array Example

The following program takes a list of lines, each beginning with a line number, and prints
them out in order of line number. The line numbers are not in order when they are first
read—instead they are scrambled. This program sorts the lines by making an array using
the line numbers as subscripts. The program then prints out the lines in sorted order of
their numbers. It is a very simple program and gets confused upon encountering repeated
numbers, gaps, or lines that don’t begin with a number:

140 GAWK: Effective AWK Programming

{

if ($1 > max)

max = $1

arr[$1] = $0

}

END {

for (x = 1; x <= max; x++)

print arr[x]

}

The first rule keeps track of the largest line number seen so far; it also stores each line
into the array arr, at an index that is the line’s number. The second rule runs after all the
input has been read, to print out all the lines. When this program is run with the following
input:

5 I am the Five man

2 Who are you? The new number two!

4 . . . And four on the floor

1 Who is number one?

3 I three you.

Its output is:

1 Who is number one?

2 Who are you? The new number two!

3 I three you.

4 . . . And four on the floor

5 I am the Five man

If a line number is repeated, the last line with a given number overrides the others. Gaps
in the line numbers can be handled with an easy improvement to the program’s END rule,
as follows:

END {

for (x = 1; x <= max; x++)

if (x in arr)

print arr[x]

}

8.1.5 Scanning All Elements of an Array

In programs that use arrays, it is often necessary to use a loop that executes once for each
element of an array. In other languages, where arrays are contiguous and indices are limited
to positive integers, this is easy: all the valid indices can be found by counting from the
lowest index up to the highest. This technique won’t do the job in awk, because any number
or string can be an array index. So awk has a special kind of for statement for scanning an
array:

for (var in array)

body

This loop executes body once for each index in array that the program has previously used,
with the variable var set to that index.

Chapter 8: Arrays in awk 141

The following program uses this form of the for statement. The first rule scans the
input records and notes which words appear (at least once) in the input, by storing a
one into the array used with the word as index. The second rule scans the elements of
used to find all the distinct words that appear in the input. It prints each word that is
more than 10 characters long and also prints the number of such words. See Section 9.1.3
[String-Manipulation Functions], page 153, for more information on the built-in function
length().

Record a 1 for each word that is used at least once

{

for (i = 1; i <= NF; i++)

used[$i] = 1

}

Find number of distinct words more than 10 characters long

END {

for (x in used) {

if (length(x) > 10) {

++num_long_words

print x

}

}

print num_long_words, "words longer than 10 characters"

}

See Section 13.3.5 [Generating Word-Usage Counts], page 271, for a more detailed example
of this type.

The order in which elements of the array are accessed by this statement is determined
by the internal arrangement of the array elements within awk and normally cannot be
controlled or changed. This can lead to problems if new elements are added to array by
statements in the loop body; it is not predictable whether the for loop will reach them.
Similarly, changing var inside the loop may produce strange results. It is best to avoid such
things.

8.1.6 Using Predefined Array Scanning Orders

By default, when a for loop traverses an array, the order is undefined, meaning that the
awk implementation determines the order in which the array is traversed. This order is
usually based on the internal implementation of arrays and will vary from one version of
awk to the next.

Often, though, you may wish to do something simple, such as “traverse the array by
comparing the indices in ascending order,” or “traverse the array by on comparing the
values in descending order.” gawk provides two mechanisms which give you this control.

• Set PROCINFO["sorted_in"] to one of a set of predefined values. We describe this
now.

• Set PROCINFO["sorted_in"] to the name of a user-defined function to be used for
comparison of array elements. This advanced feature is described later, in Section 11.2
[Controlling Array Traversal and Array Sorting], page 200.

142 GAWK: Effective AWK Programming

The following special values for PROCINFO["sorted_in"] are available:

"@unsorted"

Array elements are processed in arbitrary order, which is the default awk be-
havior.

"@ind_str_asc"

Order by indices compared as strings; this is the most basic sort. (Internally,
array indices are always strings, so with ‘a[2*5] = 1’ the index is "10" rather
than numeric 10.)

"@ind_num_asc"

Order by indices but force them to be treated as numbers in the process. Any
index with a non-numeric value will end up positioned as if it were zero.

"@val_type_asc"

Order by element values rather than indices. Ordering is by the type assigned to
the element (see Section 6.3.2 [Variable Typing and Comparison Expressions],
page 104). All numeric values come before all string values, which in turn come
before all subarrays. (Subarrays have not been described yet; see Section 8.6
[Arrays of Arrays], page 148).

"@val_str_asc"

Order by element values rather than by indices. Scalar values are compared as
strings. Subarrays, if present, come out last.

"@val_num_asc"

Order by element values rather than by indices. Scalar values are compared as
numbers. Subarrays, if present, come out last. When numeric values are equal,
the string values are used to provide an ordering: this guarantees consistent
results across different versions of the C qsort() function,1 which gawk uses
internally to perform the sorting.

"@ind_str_desc"

Reverse order from the most basic sort.

"@ind_num_desc"

Numeric indices ordered from high to low.

"@val_type_desc"

Element values, based on type, in descending order.

"@val_str_desc"

Element values, treated as strings, ordered from high to low. Subarrays, if
present, come out first.

"@val_num_desc"

Element values, treated as numbers, ordered from high to low. Subarrays, if
present, come out first.

1 When two elements compare as equal, the C qsort() function does not guarantee that they will maintain
their original relative order after sorting. Using the string value to provide a unique ordering when the
numeric values are equal ensures that gawk behaves consistently across different environments.

Chapter 8: Arrays in awk 143

The array traversal order is determined before the for loop starts to run. Changing
PROCINFO["sorted_in"] in the loop body will not affect the loop.

For example:

$ gawk ’BEGIN {

> a[4] = 4

> a[3] = 3

> for (i in a)

> print i, a[i]

> }’

a 4 4

a 3 3

$ gawk ’BEGIN {

> PROCINFO["sorted_in"] = "@ind_str_asc"

> a[4] = 4

> a[3] = 3

> for (i in a)

> print i, a[i]

> }’

a 3 3

a 4 4

When sorting an array by element values, if a value happens to be a subarray then it is
considered to be greater than any string or numeric value, regardless of what the subarray
itself contains, and all subarrays are treated as being equal to each other. Their order
relative to each other is determined by their index strings.

Here are some additional things to bear in mind about sorted array traversal.

• The value of PROCINFO["sorted_in"] is global. That is, it affects all array traversal
for loops. If you need to change it within your own code, you should see if it’s defined
and save and restore the value:

...

if ("sorted_in" in PROCINFO) {

save_sorted = PROCINFO["sorted_in"]

PROCINFO["sorted_in"] = "@val_str_desc" # or whatever

}

...

if (save_sorted)

PROCINFO["sorted_in"] = save_sorted

• As mentioned, the default array traversal order is represented by "@unsorted". You
can also get the default behavior by assigning the null string to PROCINFO["sorted_

in"] or by just deleting the "sorted_in" element from the PROCINFO array with the
delete statement. (The delete statement hasn’t been described yet; see Section 8.2
[The delete Statement], page 144.)

In addition, gawk provides built-in functions for sorting arrays; see Section 11.2.2 [Sorting
Array Values and Indices with gawk], page 204.

144 GAWK: Effective AWK Programming

8.2 The delete Statement

To remove an individual element of an array, use the delete statement:

delete array[index-expression]

Once an array element has been deleted, any value the element once had is no longer
available. It is as if the element had never been referred to or been given a value. The
following is an example of deleting elements in an array:

for (i in frequencies)

delete frequencies[i]

This example removes all the elements from the array frequencies. Once an element is
deleted, a subsequent for statement to scan the array does not report that element and the
in operator to check for the presence of that element returns zero (i.e., false):

delete foo[4]

if (4 in foo)

print "This will never be printed"

It is important to note that deleting an element is not the same as assigning it a null
value (the empty string, ""). For example:

foo[4] = ""

if (4 in foo)

print "This is printed, even though foo[4] is empty"

It is not an error to delete an element that does not exist. However, if --lint is
provided on the command line (see Section 2.2 [Command-Line Options], page 25), gawk
issues a warning message when an element that is not in the array is deleted.

All the elements of an array may be deleted with a single statement by leaving off the
subscript in the delete statement, as follows:

delete array

Using this version of the delete statement is about three times more efficient than the
equivalent loop that deletes each element one at a time.

NOTE: For many years, using delete without a subscript was a gawk extension.
As of September, 2012, it was accepted for inclusion into the POSIX standard.
See the Austin Group website. This form of the delete statement is also
supported by Brian Kernighan’s awk and mawk, as well as by a number of other
implementations (see Section B.5 [Other Freely Available awk Implementations],
page 325).

The following statement provides a portable but nonobvious way to clear out an array:2

split("", array)

The split() function (see Section 9.1.3 [String-Manipulation Functions], page 153)
clears out the target array first. This call asks it to split apart the null string. Because
there is no data to split out, the function simply clears the array and then returns.

CAUTION: Deleting an array does not change its type; you cannot delete an
array and then use the array’s name as a scalar (i.e., a regular variable). For
example, the following does not work:

2 Thanks to Michael Brennan for pointing this out.

http://austingroupbugs.net/view.php?id=544

Chapter 8: Arrays in awk 145

a[1] = 3

delete a

a = 3

8.3 Using Numbers to Subscript Arrays

An important aspect to remember about arrays is that array subscripts are always strings.
When a numeric value is used as a subscript, it is converted to a string value before being
used for subscripting (see Section 6.1.4 [Conversion of Strings and Numbers], page 95). This
means that the value of the built-in variable CONVFMT can affect how your program accesses
elements of an array. For example:

xyz = 12.153

data[xyz] = 1

CONVFMT = "%2.2f"

if (xyz in data)

printf "%s is in data\n", xyz

else

printf "%s is not in data\n", xyz

This prints ‘12.15 is not in data’. The first statement gives xyz a numeric value. As-
signing to data[xyz] subscripts data with the string value "12.153" (using the default
conversion value of CONVFMT, "%.6g"). Thus, the array element data["12.153"] is as-
signed the value one. The program then changes the value of CONVFMT. The test ‘(xyz in

data)’ generates a new string value from xyz—this time "12.15"—because the value of
CONVFMT only allows two significant digits. This test fails, since "12.15" is different from
"12.153".

According to the rules for conversions (see Section 6.1.4 [Conversion of Strings and
Numbers], page 95), integer values are always converted to strings as integers, no matter
what the value of CONVFMT may happen to be. So the usual case of the following works:

for (i = 1; i <= maxsub; i++)

do something with array[i]

The “integer values always convert to strings as integers” rule has an additional conse-
quence for array indexing. Octal and hexadecimal constants (see Section 6.1.1.2 [Octal and
Hexadecimal Numbers], page 91) are converted internally into numbers, and their original
form is forgotten. This means, for example, that array[17], array[021], and array[0x11]

all refer to the same element!

As with many things in awk, the majority of the time things work as one would expect
them to. But it is useful to have a precise knowledge of the actual rules since they can
sometimes have a subtle effect on your programs.

8.4 Using Uninitialized Variables as Subscripts

Suppose it’s necessary to write a program to print the input data in reverse order. A
reasonable attempt to do so (with some test data) might look like this:

$ echo ’line 1

> line 2

> line 3’ | awk ’{ l[lines] = $0; ++lines }

146 GAWK: Effective AWK Programming

> END {

> for (i = lines-1; i >= 0; --i)

> print l[i]

> }’

a line 3

a line 2

Unfortunately, the very first line of input data did not come out in the output!

Upon first glance, we would think that this program should have worked. The variable
lines is uninitialized, and uninitialized variables have the numeric value zero. So, awk
should have printed the value of l[0].

The issue here is that subscripts for awk arrays are always strings. Uninitialized variables,
when used as strings, have the value "", not zero. Thus, ‘line 1’ ends up stored in l[""].
The following version of the program works correctly:

{ l[lines++] = $0 }

END {

for (i = lines - 1; i >= 0; --i)

print l[i]

}

Here, the ‘++’ forces lines to be numeric, thus making the “old value” numeric zero.
This is then converted to "0" as the array subscript.

Even though it is somewhat unusual, the null string ("") is a valid array subscript.
gawk warns about the use of the null string as a subscript if --lint is provided on the
command line (see Section 2.2 [Command-Line Options], page 25).

8.5 Multidimensional Arrays

A multidimensional array is an array in which an element is identified by a sequence of
indices instead of a single index. For example, a two-dimensional array requires two indices.
The usual way (in most languages, including awk) to refer to an element of a two-dimensional
array named grid is with grid[x,y].

Multidimensional arrays are supported in awk through concatenation of indices into one
string. awk converts the indices into strings (see Section 6.1.4 [Conversion of Strings and
Numbers], page 95) and concatenates them together, with a separator between them. This
creates a single string that describes the values of the separate indices. The combined string
is used as a single index into an ordinary, one-dimensional array. The separator used is the
value of the built-in variable SUBSEP.

For example, suppose we evaluate the expression ‘foo[5,12] = "value"’ when the value
of SUBSEP is "@". The numbers 5 and 12 are converted to strings and concatenated with an
‘@’ between them, yielding "5@12"; thus, the array element foo["5@12"] is set to "value".

Once the element’s value is stored, awk has no record of whether it was stored with a sin-
gle index or a sequence of indices. The two expressions ‘foo[5,12]’ and ‘foo[5 SUBSEP 12]’
are always equivalent.

The default value of SUBSEP is the string "\034", which contains a nonprinting character
that is unlikely to appear in an awk program or in most input data. The usefulness of
choosing an unlikely character comes from the fact that index values that contain a string

Chapter 8: Arrays in awk 147

matching SUBSEP can lead to combined strings that are ambiguous. Suppose that SUBSEP
is "@"; then ‘foo["a@b", "c"]’ and ‘foo["a", "b@c"]’ are indistinguishable because both
are actually stored as ‘foo["a@b@c"]’.

To test whether a particular index sequence exists in a multidimensional array, use the
same operator (in) that is used for single dimensional arrays. Write the whole sequence of
indices in parentheses, separated by commas, as the left operand:

(subscript1, subscript2, ...) in array

The following example treats its input as a two-dimensional array of fields; it rotates
this array 90 degrees clockwise and prints the result. It assumes that all lines have the same
number of elements:

{

if (max_nf < NF)

max_nf = NF

max_nr = NR

for (x = 1; x <= NF; x++)

vector[x, NR] = $x

}

END {

for (x = 1; x <= max_nf; x++) {

for (y = max_nr; y >= 1; --y)

printf("%s ", vector[x, y])

printf("\n")

}

}

When given the input:

1 2 3 4 5 6

2 3 4 5 6 1

3 4 5 6 1 2

4 5 6 1 2 3

the program produces the following output:

4 3 2 1

5 4 3 2

6 5 4 3

1 6 5 4

2 1 6 5

3 2 1 6

8.5.1 Scanning Multidimensional Arrays

There is no special for statement for scanning a “multidimensional” array. There cannot
be one, because, in truth, awk does not have multidimensional arrays or elements—there is
only a multidimensional way of accessing an array.

However, if your program has an array that is always accessed as multidimensional, you
can get the effect of scanning it by combining the scanning for statement (see Section 8.1.5

148 GAWK: Effective AWK Programming

[Scanning All Elements of an Array], page 140) with the built-in split() function (see
Section 9.1.3 [String-Manipulation Functions], page 153). It works in the following manner:

for (combined in array) {

split(combined, separate, SUBSEP)

...

}

This sets the variable combined to each concatenated combined index in the array, and
splits it into the individual indices by breaking it apart where the value of SUBSEP appears.
The individual indices then become the elements of the array separate.

Thus, if a value is previously stored in array[1, "foo"], then an element with index
"1\034foo" exists in array. (Recall that the default value of SUBSEP is the character with
code 034.) Sooner or later, the for statement finds that index and does an iteration with
the variable combined set to "1\034foo". Then the split() function is called as follows:

split("1\034foo", separate, "\034")

The result is to set separate[1] to "1" and separate[2] to "foo". Presto! The original
sequence of separate indices is recovered.

8.6 Arrays of Arrays

gawk goes beyond standard awk’s multidimensional array access and provides true arrays
of arrays. Elements of a subarray are referred to by their own indices enclosed in square
brackets, just like the elements of the main array. For example, the following creates a
two-element subarray at index ‘1’ of the main array a:

a[1][1] = 1

a[1][2] = 2

This simulates a true two-dimensional array. Each subarray element can contain another
subarray as a value, which in turn can hold other arrays as well. In this way, you can create
arrays of three or more dimensions. The indices can be any awk expression, including scalars
separated by commas (that is, a regular awk simulated multidimensional subscript). So the
following is valid in gawk:

a[1][3][1, "name"] = "barney"

Each subarray and the main array can be of different length. In fact, the elements of an
array or its subarray do not all have to have the same type. This means that the main array
and any of its subarrays can be non-rectangular, or jagged in structure. One can assign a
scalar value to the index ‘4’ of the main array a:

a[4] = "An element in a jagged array"

The terms dimension, row and column are meaningless when applied to such an array,
but we will use “dimension” henceforth to imply the maximum number of indices needed
to refer to an existing element. The type of any element that has already been assigned
cannot be changed by assigning a value of a different type. You have to first delete the
current element, which effectively makes gawk forget about the element at that index:

delete a[4]

a[4][5][6][7] = "An element in a four-dimensional array"

This removes the scalar value from index ‘4’ and then inserts a subarray of subarray of sub-
array containing a scalar. You can also delete an entire subarray or subarray of subarrays:

Chapter 8: Arrays in awk 149

delete a[4][5]

a[4][5] = "An element in subarray a[4]"

But recall that you can not delete the main array a and then use it as a scalar.

The built-in functions which take array arguments can also be used with subarrays. For
example, the following code fragment uses length() (see Section 9.1.3 [String-Manipulation
Functions], page 153) to determine the number of elements in the main array a and its
subarrays:

print length(a), length(a[1]), length(a[1][3])

This results in the following output for our main array a:

2, 3, 1

The ‘subscript in array’ expression (see Section 8.1.2 [Referring to an Array Element],
page 138) works similarly for both regular awk-style arrays and arrays of arrays. For exam-
ple, the tests ‘1 in a’, ‘3 in a[1]’, and ‘(1, "name") in a[1][3]’ all evaluate to one (true)
for our array a.

The ‘for (item in array)’ statement (see Section 8.1.5 [Scanning All Elements of an
Array], page 140) can be nested to scan all the elements of an array of arrays if it is
rectangular in structure. In order to print the contents (scalar values) of a two-dimensional
array of arrays (i.e., in which each first-level element is itself an array, not necessarily of the
same length) you could use the following code:

for (i in array)

for (j in array[i])

print array[i][j]

The isarray() function (see Section 9.1.7 [Getting Type Information], page 175) lets
you test if an array element is itself an array:

for (i in array) {

if (isarray(array[i]) {

for (j in array[i]) {

print array[i][j]

}

}

}

If the structure of a jagged array of arrays is known in advance, you can often devise
workarounds using control statements. For example, the following code prints the elements
of our main array a:

for (i in a) {

for (j in a[i]) {

if (j == 3) {

for (k in a[i][j])

print a[i][j][k]

} else

print a[i][j]

}

}

150 GAWK: Effective AWK Programming

See Section 12.7 [Traversing Arrays of Arrays], page 240, for a user-defined function that
will “walk” an arbitrarily-dimensioned array of arrays.

Recall that a reference to an uninitialized array element yields a value of "", the null
string. This has one important implication when you intend to use a subarray as an argu-
ment to a function, as illustrated by the following example:

$ gawk ’BEGIN { split("a b c d", b[1]); print b[1][1] }’

error gawk: cmd. line:1: fatal: split: second argument is not an array

The way to work around this is to first force b[1] to be an array by creating an arbitrary
index:

$ gawk ’BEGIN { b[1][1] = ""; split("a b c d", b[1]); print b[1][1] }’

a a

Chapter 9: Functions 151

9 Functions

This chapter describes awk’s built-in functions, which fall into three categories: numeric,
string, and I/O. gawk provides additional groups of functions to work with values that
represent time, do bit manipulation, sort arrays, and internationalize and localize programs.

Besides the built-in functions, awk has provisions for writing new functions that the rest
of a program can use. The second half of this chapter describes these user-defined functions.

9.1 Built-in Functions

Built-in functions are always available for your awk program to call. This section defines
all the built-in functions in awk; some of these are mentioned in other sections but are
summarized here for your convenience.

9.1.1 Calling Built-in Functions

To call one of awk’s built-in functions, write the name of the function followed by arguments
in parentheses. For example, ‘atan2(y + z, 1)’ is a call to the function atan2() and has
two arguments.

Whitespace is ignored between the built-in function name and the open parenthesis, but
nonetheless it is good practice to avoid using whitespace there. User-defined functions do
not permit whitespace in this way, and it is easier to avoid mistakes by following a simple
convention that always works—no whitespace after a function name.

Each built-in function accepts a certain number of arguments. In some cases, arguments
can be omitted. The defaults for omitted arguments vary from function to function and are
described under the individual functions. In some awk implementations, extra arguments
given to built-in functions are ignored. However, in gawk, it is a fatal error to give extra
arguments to a built-in function.

When a function is called, expressions that create the function’s actual parameters are
evaluated completely before the call is performed. For example, in the following code
fragment:

i = 4

j = sqrt(i++)

the variable i is incremented to the value five before sqrt() is called with a value of four
for its actual parameter. The order of evaluation of the expressions used for the function’s
parameters is undefined. Thus, avoid writing programs that assume that parameters are
evaluated from left to right or from right to left. For example:

i = 5

j = atan2(i++, i *= 2)

If the order of evaluation is left to right, then i first becomes 6, and then 12, and atan2()

is called with the two arguments 6 and 12. But if the order of evaluation is right to left, i
first becomes 10, then 11, and atan2() is called with the two arguments 11 and 10.

9.1.2 Numeric Functions

The following list describes all of the built-in functions that work with numbers. Optional
parameters are enclosed in square brackets ([]):

152 GAWK: Effective AWK Programming

atan2(y, x)

Return the arctangent of y / x in radians. You can use ‘pi = atan2(0, -1)’ to
retrieve the value of π.

cos(x) Return the cosine of x, with x in radians.

exp(x) Return the exponential of x (e ^ x) or report an error if x is out of range. The
range of values x can have depends on your machine’s floating-point represen-
tation.

int(x) Return the nearest integer to x, located between x and zero and truncated
toward zero.

For example, int(3) is 3, int(3.9) is 3, int(-3.9) is −3, and int(-3) is −3
as well.

log(x) Return the natural logarithm of x, if x is positive; otherwise, report an error.

rand() Return a random number. The values of rand() are uniformly distributed
between zero and one. The value could be zero but is never one.1

Often random integers are needed instead. Following is a user-defined function
that can be used to obtain a random non-negative integer less than n:

function randint(n) {

return int(n * rand())

}

The multiplication produces a random number greater than zero and less than
n. Using int(), this result is made into an integer between zero and n − 1,
inclusive.

The following example uses a similar function to produce random integers be-
tween one and n. This program prints a new random number for each input
record:

Function to roll a simulated die.

function roll(n) { return 1 + int(rand() * n) }

Roll 3 six-sided dice and

print total number of points.

{

printf("%d points\n",

roll(6)+roll(6)+roll(6))

}

CAUTION: In most awk implementations, including gawk, rand()
starts generating numbers from the same starting number, or seed,
each time you run awk.2 Thus, a program generates the same results
each time you run it. The numbers are random within one awk run

1 The C version of rand() on many Unix systems is known to produce fairly poor sequences of random
numbers. However, nothing requires that an awk implementation use the C rand() to implement the
awk version of rand(). In fact, gawk uses the BSD random() function, which is considerably better than
rand(), to produce random numbers.

2 mawk uses a different seed each time.

Chapter 9: Functions 153

but predictable from run to run. This is convenient for debugging,
but if you want a program to do different things each time it is
used, you must change the seed to a value that is different in each
run. To do this, use srand().

sin(x) Return the sine of x, with x in radians.

sqrt(x) Return the positive square root of x. gawk prints a warning message if x is
negative. Thus, sqrt(4) is 2.

srand([x])
Set the starting point, or seed, for generating random numbers to the value x.

Each seed value leads to a particular sequence of random numbers.3 Thus, if
the seed is set to the same value a second time, the same sequence of random
numbers is produced again.

CAUTION: Different awk implementations use different random-
number generators internally. Don’t expect the same awk program
to produce the same series of random numbers when executed by
different versions of awk.

If the argument x is omitted, as in ‘srand()’, then the current date and time
of day are used for a seed. This is the way to get random numbers that are
truly unpredictable.

The return value of srand() is the previous seed. This makes it easy to keep
track of the seeds in case you need to consistently reproduce sequences of ran-
dom numbers.

9.1.3 String-Manipulation Functions

The functions in this section look at or change the text of one or more strings. gawk

understands locales (see Section 6.6 [Where You Are Makes A Difference], page 112), and
does all string processing in terms of characters, not bytes. This distinction is particularly
important to understand for locales where one character may be represented by multiple
bytes. Thus, for example, length() returns the number of characters in a string, and
not the number of bytes used to represent those characters, Similarly, index() works with
character indices, and not byte indices.

In the following list, optional parameters are enclosed in square brackets ([]). Several
functions perform string substitution; the full discussion is provided in the description of
the sub() function, which comes towards the end since the list is presented in alphabetic
order. Those functions that are specific to gawk are marked with a pound sign (‘#’):

asort(source [, dest [, how]]) #

Return the number of elements in the array source. gawk sorts the contents
of source and replaces the indices of the sorted values of source with sequen-
tial integers starting with one. If the optional array dest is specified, then
source is duplicated into dest. dest is then sorted, leaving the indices of source

3 Computer-generated random numbers really are not truly random. They are technically known as
“pseudorandom.” This means that while the numbers in a sequence appear to be random, you can in
fact generate the same sequence of random numbers over and over again.

154 GAWK: Effective AWK Programming

unchanged. The optional third argument how is a string which controls the
rule for comparing values, and the sort direction. A single space is required
between the comparison mode, ‘string’ or ‘number’, and the direction spec-
ification, ‘ascending’ or ‘descending’. You can omit direction and/or mode
in which case it will default to ‘ascending’ and ‘string’, respectively. An
empty string "" is the same as the default "ascending string" for the value
of how. If the ‘source’ array contains subarrays as values, they will come out
last(first) in the ‘dest’ array for ‘ascending’(‘descending’) order specification.
The value of IGNORECASE affects the sorting. The third argument can also be
a user-defined function name in which case the value returned by the function
is used to order the array elements before constructing the result array. See
Section 11.2.2 [Sorting Array Values and Indices with gawk], page 204, for more
information.

For example, if the contents of a are as follows:

a["last"] = "de"

a["first"] = "sac"

a["middle"] = "cul"

A call to asort():

asort(a)

results in the following contents of a:

a[1] = "cul"

a[2] = "de"

a[3] = "sac"

In order to reverse the direction of the sorted results in the above example,
asort() can be called with three arguments as follows:

asort(a, a, "descending")

The asort() function is described in more detail in Section 11.2.2 [Sorting
Array Values and Indices with gawk], page 204. asort() is a gawk extension; it
is not available in compatibility mode (see Section 2.2 [Command-Line Options],
page 25).

asorti(source [, dest [, how]]) #

Return the number of elements in the array source. It works similarly to
asort(), however, the indices are sorted, instead of the values. (Here too,
IGNORECASE affects the sorting.)

The asorti() function is described in more detail in Section 11.2.2 [Sorting
Array Values and Indices with gawk], page 204. asorti() is a gawk extension; it
is not available in compatibility mode (see Section 2.2 [Command-Line Options],
page 25).

gensub(regexp, replacement, how [, target]) #

Search the target string target for matches of the regular expression regexp. If
how is a string beginning with ‘g’ or ‘G’ (short for “global”), then replace all
matches of regexp with replacement. Otherwise, how is treated as a number
indicating which match of regexp to replace. If no target is supplied, use $0. It

Chapter 9: Functions 155

returns the modified string as the result of the function and the original target
string is not changed.

gensub() is a general substitution function. It’s purpose is to provide more
features than the standard sub() and gsub() functions.

gensub() provides an additional feature that is not available in sub() or
gsub(): the ability to specify components of a regexp in the replacement text.
This is done by using parentheses in the regexp to mark the components and
then specifying ‘\N’ in the replacement text, where N is a digit from 1 to 9. For
example:

$ gawk ’

> BEGIN {

> a = "abc def"

> b = gensub(/(.+) (.+)/, "\\2 \\1", "g", a)

> print b

> }’

a def abc

As with sub(), you must type two backslashes in order to get one into the string.
In the replacement text, the sequence ‘\0’ represents the entire matched text,
as does the character ‘&’.

The following example shows how you can use the third argument to control
which match of the regexp should be changed:

$ echo a b c a b c |

> gawk ’{ print gensub(/a/, "AA", 2) }’

a a b c AA b c

In this case, $0 is the default target string. gensub() returns the new string as
its result, which is passed directly to print for printing.

If the how argument is a string that does not begin with ‘g’ or ‘G’, or if it is a
number that is less than or equal to zero, only one substitution is performed.
If how is zero, gawk issues a warning message.

If regexp does not match target, gensub()’s return value is the original un-
changed value of target.

gensub() is a gawk extension; it is not available in compatibility mode (see
Section 2.2 [Command-Line Options], page 25).

gsub(regexp, replacement [, target])
Search target for all of the longest, leftmost, nonoverlapping matching sub-
strings it can find and replace them with replacement. The ‘g’ in gsub() stands
for “global,” which means replace everywhere. For example:

{ gsub(/Britain/, "United Kingdom"); print }

replaces all occurrences of the string ‘Britain’ with ‘United Kingdom’ for all
input records.

The gsub() function returns the number of substitutions made. If the variable
to search and alter (target) is omitted, then the entire input record ($0) is used.
As in sub(), the characters ‘&’ and ‘\’ are special, and the third argument must
be assignable.

156 GAWK: Effective AWK Programming

index(in, find)

Search the string in for the first occurrence of the string find, and return the
position in characters where that occurrence begins in the string in. Consider
the following example:

$ awk ’BEGIN { print index("peanut", "an") }’

a 3

If find is not found, index() returns zero. (Remember that string indices in
awk start at one.)

length([string])
Return the number of characters in string. If string is a number, the length
of the digit string representing that number is returned. For example,
length("abcde") is five. By contrast, length(15 * 35) works out to three.
In this example, 15 * 35 = 525, and 525 is then converted to the string "525",
which has three characters.

If no argument is supplied, length() returns the length of $0.

NOTE: In older versions of awk, the length() function could be
called without any parentheses. Doing so is considered poor prac-
tice, although the 2008 POSIX standard explicitly allows it, to sup-
port historical practice. For programs to be maximally portable,
always supply the parentheses.

If length() is called with a variable that has not been used, gawk forces the
variable to be a scalar. Other implementations of awk leave the variable without
a type. Consider:

$ gawk ’BEGIN { print length(x) ; x[1] = 1 }’

a 0

error gawk: fatal: attempt to use scalar ‘x’ as array

$ nawk ’BEGIN { print length(x) ; x[1] = 1 }’

a 0

If --lint has been specified on the command line, gawk issues a warning about
this.

With gawk and several other awk implementations, when given an array argu-
ment, the length() function returns the number of elements in the array. (c.e.)
This is less useful than it might seem at first, as the array is not guaranteed to be
indexed from one to the number of elements in it. If --lint is provided on the
command line (see Section 2.2 [Command-Line Options], page 25), gawk warns
that passing an array argument is not portable. If --posix is supplied, using
an array argument is a fatal error (see Chapter 8 [Arrays in awk], page 137).

match(string, regexp [, array])
Search string for the longest, leftmost substring matched by the regular expres-
sion, regexp and return the character position, or index, at which that substring
begins (one, if it starts at the beginning of string). If no match is found, return
zero.

The regexp argument may be either a regexp constant (/.../) or a string
constant ("..."). In the latter case, the string is treated as a regexp to be

Chapter 9: Functions 157

matched. See Section 3.8 [Using Dynamic Regexps], page 47, for a discussion
of the difference between the two forms, and the implications for writing your
program correctly.

The order of the first two arguments is backwards from most other string func-
tions that work with regular expressions, such as sub() and gsub(). It might
help to remember that for match(), the order is the same as for the ‘~’ operator:
‘string ~ regexp’.

The match() function sets the built-in variable RSTART to the index. It also
sets the built-in variable RLENGTH to the length in characters of the matched
substring. If no match is found, RSTART is set to zero, and RLENGTH to −1.
For example:

{

if ($1 == "FIND")

regex = $2

else {

where = match($0, regex)

if (where != 0)

print "Match of", regex, "found at",

where, "in", $0

}

}

This program looks for lines that match the regular expression stored in the
variable regex. This regular expression can be changed. If the first word on a
line is ‘FIND’, regex is changed to be the second word on that line. Therefore,
if given:

FIND ru+n

My program runs

but not very quickly

FIND Melvin

JF+KM

This line is property of Reality Engineering Co.

Melvin was here.

awk prints:

Match of ru+n found at 12 in My program runs

Match of Melvin found at 1 in Melvin was here.

If array is present, it is cleared, and then the zeroth element of array is set to
the entire portion of string matched by regexp. If regexp contains parentheses,
the integer-indexed elements of array are set to contain the portion of string
matching the corresponding parenthesized subexpression. For example:

$ echo foooobazbarrrrr |

> gawk ’{ match($0, /(fo+).+(bar*)/, arr)

> print arr[1], arr[2] }’

a foooo barrrrr

In addition, multidimensional subscripts are available providing the start index
and length of each matched subexpression:

158 GAWK: Effective AWK Programming

$ echo foooobazbarrrrr |

> gawk ’{ match($0, /(fo+).+(bar*)/, arr)

> print arr[1], arr[2]

> print arr[1, "start"], arr[1, "length"]

> print arr[2, "start"], arr[2, "length"]

> }’

a foooo barrrrr

a 1 5

a 9 7

There may not be subscripts for the start and index for every parenthesized
subexpression, since they may not all have matched text; thus they should
be tested for with the in operator (see Section 8.1.2 [Referring to an Array
Element], page 138).

The array argument to match() is a gawk extension. In compatibility mode
(see Section 2.2 [Command-Line Options], page 25), using a third argument is
a fatal error.

patsplit(string, array [, fieldpat [, seps]]) #

Divide string into pieces defined by fieldpat and store the pieces in array and
the separator strings in the seps array. The first piece is stored in array[1],
the second piece in array[2], and so forth. The third argument, fieldpat, is a
regexp describing the fields in string (just as FPAT is a regexp describing the
fields in input records). It may be either a regexp constant or a string. If
fieldpat is omitted, the value of FPAT is used. patsplit() returns the number
of elements created. seps[i] is the separator string between array[i] and
array[i+1]. Any leading separator will be in seps[0].

The patsplit() function splits strings into pieces in a manner similar to the
way input lines are split into fields using FPAT (see Section 4.7 [Defining Fields
By Content], page 63.

Before splitting the string, patsplit() deletes any previously existing elements
in the arrays array and seps.

The patsplit() function is a gawk extension. In compatibility mode (see
Section 2.2 [Command-Line Options], page 25), it is not available.

split(string, array [, fieldsep [, seps]])
Divide string into pieces separated by fieldsep and store the pieces in array and
the separator strings in the seps array. The first piece is stored in array[1],
the second piece in array[2], and so forth. The string value of the third
argument, fieldsep, is a regexp describing where to split string (much as FS can
be a regexp describing where to split input records; see Section 4.5.2 [Using
Regular Expressions to Separate Fields], page 57). If fieldsep is omitted, the
value of FS is used. split() returns the number of elements created. seps is a
gawk extension with seps[i] being the separator string between array[i] and
array[i+1]. If fieldsep is a single space then any leading whitespace goes into
seps[0] and any trailing whitespace goes into seps[n] where n is the return
value of split() (that is, the number of elements in array).

Chapter 9: Functions 159

The split() function splits strings into pieces in a manner similar to the way
input lines are split into fields. For example:

split("cul-de-sac", a, "-", seps)

splits the string ‘cul-de-sac’ into three fields using ‘-’ as the separator. It sets
the contents of the array a as follows:

a[1] = "cul"

a[2] = "de"

a[3] = "sac"

and sets the contents of the array seps as follows:

seps[1] = "-"

seps[2] = "-"

The value returned by this call to split() is three.

As with input field-splitting, when the value of fieldsep is " ", leading and
trailing whitespace is ignored in values assigned to the elements of array but
not in seps, and the elements are separated by runs of whitespace. Also as with
input field-splitting, if fieldsep is the null string, each individual character in
the string is split into its own array element. (c.e.)

Note, however, that RS has no effect on the way split() works. Even though
‘RS = ""’ causes newline to also be an input field separator, this does not affect
how split() splits strings.

Modern implementations of awk, including gawk, allow the third argument to
be a regexp constant (/abc/) as well as a string. The POSIX standard allows
this as well. See Section 3.8 [Using Dynamic Regexps], page 47, for a discussion
of the difference between using a string constant or a regexp constant, and the
implications for writing your program correctly.

Before splitting the string, split() deletes any previously existing elements in
the arrays array and seps.

If string is null, the array has no elements. (So this is a portable way to delete
an entire array with one statement. See Section 8.2 [The delete Statement],
page 144.)

If string does not match fieldsep at all (but is not null), array has one element
only. The value of that element is the original string.

sprintf(format, expression1, ...)

Return (without printing) the string that printf would have printed out with
the same arguments (see Section 5.5 [Using printf Statements for Fancier
Printing], page 78). For example:

pival = sprintf("pi = %.2f (approx.)", 22/7)

assigns the string ‘pi = 3.14 (approx.)’ to the variable pival.

strtonum(str) #

Examine str and return its numeric value. If str begins with a leading ‘0’,
strtonum() assumes that str is an octal number. If str begins with a lead-
ing ‘0x’ or ‘0X’, strtonum() assumes that str is a hexadecimal number. For
example:

160 GAWK: Effective AWK Programming

$ echo 0x11 |

> gawk ’{ printf "%d\n", strtonum($1) }’

a 17

Using the strtonum() function is not the same as adding zero to a string value;
the automatic coercion of strings to numbers works only for decimal data, not
for octal or hexadecimal.4

Note also that strtonum() uses the current locale’s decimal point for recogniz-
ing numbers (see Section 6.6 [Where You Are Makes A Difference], page 112).

strtonum() is a gawk extension; it is not available in compatibility mode (see
Section 2.2 [Command-Line Options], page 25).

sub(regexp, replacement [, target])
Search target, which is treated as a string, for the leftmost, longest substring
matched by the regular expression regexp. Modify the entire string by replacing
the matched text with replacement. The modified string becomes the new value
of target. Return the number of substitutions made (zero or one).

The regexp argument may be either a regexp constant (/.../) or a string
constant ("..."). In the latter case, the string is treated as a regexp to be
matched. See Section 3.8 [Using Dynamic Regexps], page 47, for a discussion
of the difference between the two forms, and the implications for writing your
program correctly.

This function is peculiar because target is not simply used to compute a value,
and not just any expression will do—it must be a variable, field, or array element
so that sub() can store a modified value there. If this argument is omitted,
then the default is to use and alter $0.5 For example:

str = "water, water, everywhere"

sub(/at/, "ith", str)

sets str to ‘wither, water, everywhere’, by replacing the leftmost longest
occurrence of ‘at’ with ‘ith’.

If the special character ‘&’ appears in replacement, it stands for the precise
substring that was matched by regexp. (If the regexp can match more than one
string, then this precise substring may vary.) For example:

{ sub(/candidate/, "& and his wife"); print }

changes the first occurrence of ‘candidate’ to ‘candidate and his wife’ on
each input line. Here is another example:

$ awk ’BEGIN {

> str = "daabaaa"

> sub(/a+/, "C&C", str)

> print str

> }’

4 Unless you use the --non-decimal-data option, which isn’t recommended. See Section 11.1 [Allowing
Nondecimal Input Data], page 199, for more information.

5 Note that this means that the record will first be regenerated using the value of OFS if any fields have
been changed, and that the fields will be updated after the substitution, even if the operation is a “no-op”
such as ‘sub(/^/, "")’.

Chapter 9: Functions 161

a dCaaCbaaa

This shows how ‘&’ can represent a nonconstant string and also illustrates the
“leftmost, longest” rule in regexp matching (see Section 3.7 [How Much Text
Matches?], page 46).

The effect of this special character (‘&’) can be turned off by putting a backslash
before it in the string. As usual, to insert one backslash in the string, you must
write two backslashes. Therefore, write ‘\\&’ in a string constant to include a
literal ‘&’ in the replacement. For example, the following shows how to replace
the first ‘|’ on each line with an ‘&’:

{ sub(/\|/, "\\&"); print }

As mentioned, the third argument to sub() must be a variable, field or array
element. Some versions of awk allow the third argument to be an expression
that is not an lvalue. In such a case, sub() still searches for the pattern and
returns zero or one, but the result of the substitution (if any) is thrown away
because there is no place to put it. Such versions of awk accept expressions like
the following:

sub(/USA/, "United States", "the USA and Canada")

For historical compatibility, gawk accepts such erroneous code. However, using
any other nonchangeable object as the third parameter causes a fatal error and
your program will not run.

Finally, if the regexp is not a regexp constant, it is converted into a string, and
then the value of that string is treated as the regexp to match.

substr(string, start [, length])
Return a length-character-long substring of string, starting at character number
start. The first character of a string is character number one.6 For example,
substr("washington", 5, 3) returns "ing".

If length is not present, substr() returns the whole suffix of string that begins
at character number start. For example, substr("washington", 5) returns
"ington". The whole suffix is also returned if length is greater than the number
of characters remaining in the string, counting from character start.

If start is less than one, substr() treats it as if it was one. (POSIX doesn’t
specify what to do in this case: Brian Kernighan’s awk acts this way, and
therefore gawk does too.) If start is greater than the number of characters in
the string, substr() returns the null string. Similarly, if length is present but
less than or equal to zero, the null string is returned.

The string returned by substr() cannot be assigned. Thus, it is a mistake to
attempt to change a portion of a string, as shown in the following example:

string = "abcdef"

try to get "abCDEf", won’t work

substr(string, 3, 3) = "CDE"

It is also a mistake to use substr() as the third argument of sub() or gsub():

6 This is different from C and C++, in which the first character is number zero.

162 GAWK: Effective AWK Programming

gsub(/xyz/, "pdq", substr($0, 5, 20)) # WRONG

(Some commercial versions of awk treat substr() as assignable, but doing so
is not portable.)

If you need to replace bits and pieces of a string, combine substr() with string
concatenation, in the following manner:

string = "abcdef"

...

string = substr(string, 1, 2) "CDE" substr(string, 6)

tolower(string)

Return a copy of string, with each uppercase character in the string replaced
with its corresponding lowercase character. Nonalphabetic characters are left
unchanged. For example, tolower("MiXeD cAsE 123") returns "mixed case

123".

toupper(string)

Return a copy of string, with each lowercase character in the string replaced
with its corresponding uppercase character. Nonalphabetic characters are left
unchanged. For example, toupper("MiXeD cAsE 123") returns "MIXED CASE

123".

9.1.3.1 More About ‘\’ and ‘&’ with sub(), gsub(), and gensub()

When using sub(), gsub(), or gensub(), and trying to get literal backslashes and am-
persands into the replacement text, you need to remember that there are several levels of
escape processing going on.

First, there is the lexical level, which is when awk reads your program and builds an
internal copy of it that can be executed. Then there is the runtime level, which is when awk

actually scans the replacement string to determine what to generate.

At both levels, awk looks for a defined set of characters that can come after a backslash.
At the lexical level, it looks for the escape sequences listed in Section 3.2 [Escape Sequences],
page 38. Thus, for every ‘\’ that awk processes at the runtime level, you must type two
backslashes at the lexical level. When a character that is not valid for an escape sequence
follows the ‘\’, Brian Kernighan’s awk and gawk both simply remove the initial ‘\’ and put
the next character into the string. Thus, for example, "a\qb" is treated as "aqb".

At the runtime level, the various functions handle sequences of ‘\’ and ‘&’ differently.
The situation is (sadly) somewhat complex. Historically, the sub() and gsub() functions
treated the two character sequence ‘\&’ specially; this sequence was replaced in the generated
text with a single ‘&’. Any other ‘\’ within the replacement string that did not precede an
‘&’ was passed through unchanged. This is illustrated in Table 9.1.

Chapter 9: Functions 163

You type sub() sees sub() generates

\& & the matched text
\\& \& a literal ‘&’

\\\& \& a literal ‘&’
\\\\& \\& a literal ‘\&’
\\\\\& \\& a literal ‘\&’
\\\\\\& \\\& a literal ‘\\&’

\\q \q a literal ‘\q’

Table 9.1: Historical Escape Sequence Processing for sub() and gsub()

This table shows both the lexical-level processing, where an odd number of backslashes
becomes an even number at the runtime level, as well as the runtime processing done by
sub(). (For the sake of simplicity, the rest of the following tables only show the case of
even numbers of backslashes entered at the lexical level.)

The problem with the historical approach is that there is no way to get a literal ‘\’
followed by the matched text.

The 1992 POSIX standard attempted to fix this problem. That standard says that
sub() and gsub() look for either a ‘\’ or an ‘&’ after the ‘\’. If either one follows a ‘\’,
that character is output literally. The interpretation of ‘\’ and ‘&’ then becomes as shown
in Table 9.2.

You type sub() sees sub() generates

& & the matched text
\\& \& a literal ‘&’

\\\\& \\& a literal ‘\’, then the matched text
\\\\\\& \\\& a literal ‘\&’

Table 9.2: 1992 POSIX Rules for sub and gsub Escape Sequence Processing

This appears to solve the problem. Unfortunately, the phrasing of the standard is unusual.
It says, in effect, that ‘\’ turns off the special meaning of any following character, but for
anything other than ‘\’ and ‘&’, such special meaning is undefined. This wording leads to
two problems:

• Backslashes must now be doubled in the replacement string, breaking historical awk
programs.

• To make sure that an awk program is portable, every character in the replacement
string must be preceded with a backslash.7

Because of the problems just listed, in 1996, the gawk maintainer submitted proposed
text for a revised standard that reverts to rules that correspond more closely to the original

7 This consequence was certainly unintended.

164 GAWK: Effective AWK Programming

existing practice. The proposed rules have special cases that make it possible to produce a
‘\’ preceding the matched text. This is shown in Table 9.3.

You type sub() sees sub() generates

\\\\\\& \\\& a literal ‘\&’
\\\\& \\& a literal ‘\’, followed by the matched text
\\& \& a literal ‘&’
\\q \q a literal ‘\q’

\\\\ \\ \\

Table 9.3: Proposed rules for sub and backslash

In a nutshell, at the runtime level, there are now three special sequences of characters
(‘\\\&’, ‘\\&’ and ‘\&’) whereas historically there was only one. However, as in the historical
case, any ‘\’ that is not part of one of these three sequences is not special and appears in
the output literally.

gawk 3.0 and 3.1 follow these proposed POSIX rules for sub() and gsub(). The POSIX
standard took much longer to be revised than was expected in 1996. The 2001 standard
does not follow the above rules. Instead, the rules there are somewhat simpler. The results
are similar except for one case.

The POSIX rules state that ‘\&’ in the replacement string produces a literal ‘&’, ‘\\’
produces a literal ‘\’, and ‘\’ followed by anything else is not special; the ‘\’ is placed
straight into the output. These rules are presented in Table 9.4.

You type sub() sees sub() generates

\\\\\\& \\\& a literal ‘\&’
\\\\& \\& a literal ‘\’, followed by the matched text
\\& \& a literal ‘&’
\\q \q a literal ‘\q’

\\\\ \\ \

Table 9.4: POSIX rules for sub() and gsub()

The only case where the difference is noticeable is the last one: ‘\\\\’ is seen as ‘\\’ and
produces ‘\’ instead of ‘\\’.

Starting with version 3.1.4, gawk followed the POSIX rules when --posix is specified
(see Section 2.2 [Command-Line Options], page 25). Otherwise, it continued to follow the
1996 proposed rules, since that had been its behavior for many years.

When version 4.0.0, was released, the gawkmaintainer made the POSIX rules the default,
breaking well over a decade’s worth of backwards compatibility.8 Needless to say, this was

8 This was rather naive of him, despite there being a note in this section indicating that the next major
version would move to the POSIX rules.

Chapter 9: Functions 165

a bad idea, and as of version 4.0.1, gawk resumed its historical behavior, and only follows
the POSIX rules when --posix is given.

The rules for gensub() are considerably simpler. At the runtime level, whenever gawk
sees a ‘\’, if the following character is a digit, then the text that matched the corresponding
parenthesized subexpression is placed in the generated output. Otherwise, no matter what
character follows the ‘\’, it appears in the generated text and the ‘\’ does not, as shown in
Table 9.5.

You type gensub() sees gensub() generates

& & the matched text
\\& \& a literal ‘&’
\\\\ \\ a literal ‘\’

\\\\& \\& a literal ‘\’, then the matched text
\\\\\\& \\\& a literal ‘\&’

\\q \q a literal ‘q’

Table 9.5: Escape Sequence Processing for gensub()

Because of the complexity of the lexical and runtime level processing and the special
cases for sub() and gsub(), we recommend the use of gawk and gensub() when you have
to do substitutions.

Advanced Notes: Matching the Null String

In awk, the ‘*’ operator can match the null string. This is particularly important for the
sub(), gsub(), and gensub() functions. For example:

$ echo abc | awk ’{ gsub(/m*/, "X"); print }’

a XaXbXcX

Although this makes a certain amount of sense, it can be surprising.

9.1.4 Input/Output Functions

The following functions relate to input/output (I/O). Optional parameters are enclosed in
square brackets ([]):

close(filename [, how])
Close the file filename for input or output. Alternatively, the argument may be
a shell command that was used for creating a coprocess, or for redirecting to
or from a pipe; then the coprocess or pipe is closed. See Section 5.8 [Closing
Input and Output Redirections], page 88, for more information.

When closing a coprocess, it is occasionally useful to first close one end of the
two-way pipe and then to close the other. This is done by providing a second
argument to close(). This second argument should be one of the two string
values "to" or "from", indicating which end of the pipe to close. Case in
the string does not matter. See Section 11.3 [Two-Way Communications with
Another Process], page 205, which discusses this feature in more detail and
gives an example.

166 GAWK: Effective AWK Programming

fflush([filename])
Flush any buffered output associated with filename, which is either a file opened
for writing or a shell command for redirecting output to a pipe or coprocess.

Many utility programs buffer their output; i.e., they save information to write
to a disk file or the screen in memory until there is enough for it to be worthwhile
to send the data to the output device. This is often more efficient than writing
every little bit of information as soon as it is ready. However, sometimes it is
necessary to force a program to flush its buffers; that is, write the information to
its destination, even if a buffer is not full. This is the purpose of the fflush()
function—gawk also buffers its output and the fflush() function forces gawk
to flush its buffers.

fflush() was added to Brian Kernighan’s version of awk in 1994. For over two
decades, it was not part of the POSIX standard. As of December, 2012, it was
accepted for inclusion into the POSIX standard. See the Austin Group website.

POSIX standardizes fflush() as follows: If there is no argument, or if the
argument is the null string (""), then awk flushes the buffers for all open output
files and pipes.

NOTE: Prior to version 4.0.2, gawk would flush only the standard
output if there was no argument, and flush all output files and pipes
if the argument was the null string. This was changed in order
to be compatible with Brian Kernighan’s awk, in the hope that
standardizing this feature in POSIX would then be easier (which
indeed helped).

With gawk, you can use ‘fflush("/dev/stdout")’ if you wish to
flush only the standard output.

fflush() returns zero if the buffer is successfully flushed; otherwise, it returns
non-zero (gawk returns −1). In the case where all buffers are flushed, the return
value is zero only if all buffers were flushed successfully. Otherwise, it is −1,
and gawk warns about the problem filename.

gawk also issues a warning message if you attempt to flush a file or pipe that
was opened for reading (such as with getline), or if filename is not an open
file, pipe, or coprocess. In such a case, fflush() returns −1, as well.

system(command)

Execute the operating-system command command and then return to the awk

program. Return command’s exit status.

For example, if the following fragment of code is put in your awk program:

END {

system("date | mail -s ’awk run done’ root")

}

the system administrator is sent mail when the awk program finishes processing
input and begins its end-of-input processing.

Note that redirecting print or printf into a pipe is often enough to accomplish
your task. If you need to run many commands, it is more efficient to simply
print them down a pipeline to the shell:

http://austingroupbugs.net/view.php?id=634

Chapter 9: Functions 167

while (more stuff to do)

print command | "/bin/sh"

close("/bin/sh")

However, if your awk program is interactive, system() is useful for running large
self-contained programs, such as a shell or an editor. Some operating systems
cannot implement the system() function. system() causes a fatal error if it is
not supported.

NOTE: When --sandbox is specified, the system() function is dis-
abled (see Section 2.2 [Command-Line Options], page 25).

Advanced Notes: Interactive Versus Noninteractive Buffering

As a side point, buffering issues can be even more confusing, depending upon whether your
program is interactive, i.e., communicating with a user sitting at a keyboard.9

Interactive programs generally line buffer their output; i.e., they write out every line.
Noninteractive programs wait until they have a full buffer, which may be many lines of
output. Here is an example of the difference:

$ awk ’{ print $1 + $2 }’

1 1

a 2

2 3

a 5

Ctrl-d

Each line of output is printed immediately. Compare that behavior with this example:

$ awk ’{ print $1 + $2 }’ | cat

1 1

2 3

Ctrl-d

a 2

a 5

Here, no output is printed until after the Ctrl-d is typed, because it is all buffered and
sent down the pipe to cat in one shot.

Advanced Notes: Controlling Output Buffering with system()

The fflush() function provides explicit control over output buffering for individual files and
pipes. However, its use is not portable to many older awk implementations. An alternative
method to flush output buffers is to call system() with a null string as its argument:

system("") # flush output

gawk treats this use of the system() function as a special case and is smart enough not to
run a shell (or other command interpreter) with the empty command. Therefore, with gawk,
this idiom is not only useful, it is also efficient. While this method should work with other
awk implementations, it does not necessarily avoid starting an unnecessary shell. (Other

9 A program is interactive if the standard output is connected to a terminal device. On modern systems,
this means your keyboard and screen.

168 GAWK: Effective AWK Programming

implementations may only flush the buffer associated with the standard output and not
necessarily all buffered output.)

If you think about what a programmer expects, it makes sense that system() should
flush any pending output. The following program:

BEGIN {

print "first print"

system("echo system echo")

print "second print"

}

must print:

first print

system echo

second print

and not:

system echo

first print

second print

If awk did not flush its buffers before calling system(), you would see the latter (unde-
sirable) output.

9.1.5 Time Functions

awk programs are commonly used to process log files containing timestamp information,
indicating when a particular log record was written. Many programs log their timestamp
in the form returned by the time() system call, which is the number of seconds since a
particular epoch. On POSIX-compliant systems, it is the number of seconds since 1970-
01-01 00:00:00 UTC, not counting leap seconds.10 All known POSIX-compliant systems
support timestamps from 0 through 231 − 1, which is sufficient to represent times through
2038-01-19 03:14:07 UTC. Many systems support a wider range of timestamps, including
negative timestamps that represent times before the epoch.

In order to make it easier to process such log files and to produce useful reports, gawk
provides the following functions for working with timestamps. They are gawk extensions;
they are not specified in the POSIX standard, nor are they in any other known version of
awk.11 Optional parameters are enclosed in square brackets ([]):

mktime(datespec)

Turn datespec into a timestamp in the same form as is returned by systime().
It is similar to the function of the same name in ISO C. The argument, datespec,
is a string of the form "YYYY MM DD HH MM SS [DST]". The string consists of six
or seven numbers representing, respectively, the full year including century, the
month from 1 to 12, the day of the month from 1 to 31, the hour of the day from
0 to 23, the minute from 0 to 59, the second from 0 to 60,12 and an optional
daylight-savings flag.

10 See [Glossary], page 351, especially the entries “Epoch” and “UTC.”
11 The GNU date utility can also do many of the things described here. Its use may be preferable for

simple time-related operations in shell scripts.
12 Occasionally there are minutes in a year with a leap second, which is why the seconds can go up to 60.

Chapter 9: Functions 169

The values of these numbers need not be within the ranges specified; for exam-
ple, an hour of −1 means 1 hour before midnight. The origin-zero Gregorian
calendar is assumed, with year 0 preceding year 1 and year −1 preceding year
0. The time is assumed to be in the local timezone. If the daylight-savings flag
is positive, the time is assumed to be daylight savings time; if zero, the time is
assumed to be standard time; and if negative (the default), mktime() attempts
to determine whether daylight savings time is in effect for the specified time.

If datespec does not contain enough elements or if the resulting time is out of
range, mktime() returns −1.

strftime([format [, timestamp [, utc-flag]]])
Format the time specified by timestamp based on the contents of the format
string and return the result. It is similar to the function of the same name
in ISO C. If utc-flag is present and is either nonzero or non-null, the value is
formatted as UTC (Coordinated Universal Time, formerly GMT or Greenwich
Mean Time). Otherwise, the value is formatted for the local time zone. The
timestamp is in the same format as the value returned by the systime() func-
tion. If no timestamp argument is supplied, gawk uses the current time of day
as the timestamp. If no format argument is supplied, strftime() uses the
value of PROCINFO["strftime"] as the format string (see Section 7.5 [Built-in
Variables], page 128). The default string value is "%a %b %e %H:%M:%S %Z %Y".
This format string produces output that is equivalent to that of the date utility.
You can assign a new value to PROCINFO["strftime"] to change the default
format.

systime()

Return the current time as the number of seconds since the system epoch. On
POSIX systems, this is the number of seconds since 1970-01-01 00:00:00 UTC,
not counting leap seconds. It may be a different number on other systems.

The systime() function allows you to compare a timestamp from a log file with the
current time of day. In particular, it is easy to determine how long ago a particular record
was logged. It also allows you to produce log records using the “seconds since the epoch”
format.

The mktime() function allows you to convert a textual representation of a date and time
into a timestamp. This makes it easy to do before/after comparisons of dates and times,
particularly when dealing with date and time data coming from an external source, such as
a log file.

The strftime() function allows you to easily turn a timestamp into human-readable
information. It is similar in nature to the sprintf() function (see Section 9.1.3 [String-
Manipulation Functions], page 153), in that it copies nonformat specification characters
verbatim to the returned string, while substituting date and time values for format specifi-
cations in the format string.

strftime() is guaranteed by the 1999 ISO C standard13 to support the following date
format specifications:

%a The locale’s abbreviated weekday name.

13 Unfortunately, not every system’s strftime() necessarily supports all of the conversions listed here.

170 GAWK: Effective AWK Programming

%A The locale’s full weekday name.

%b The locale’s abbreviated month name.

%B The locale’s full month name.

%c The locale’s “appropriate” date and time representation. (This is ‘%A %B %d %T

%Y’ in the "C" locale.)

%C The century part of the current year. This is the year divided by 100 and
truncated to the next lower integer.

%d The day of the month as a decimal number (01–31).

%D Equivalent to specifying ‘%m/%d/%y’.

%e The day of the month, padded with a space if it is only one digit.

%F Equivalent to specifying ‘%Y-%m-%d’. This is the ISO 8601 date format.

%g The year modulo 100 of the ISO 8601 week number, as a decimal number (00–
99). For example, January 1, 1993 is in week 53 of 1992. Thus, the year of
its ISO 8601 week number is 1992, even though its year is 1993. Similarly,
December 31, 1973 is in week 1 of 1974. Thus, the year of its ISO week number
is 1974, even though its year is 1973.

%G The full year of the ISO week number, as a decimal number.

%h Equivalent to ‘%b’.

%H The hour (24-hour clock) as a decimal number (00–23).

%I The hour (12-hour clock) as a decimal number (01–12).

%j The day of the year as a decimal number (001–366).

%m The month as a decimal number (01–12).

%M The minute as a decimal number (00–59).

%n A newline character (ASCII LF).

%p The locale’s equivalent of the AM/PM designations associated with a 12-hour
clock.

%r The locale’s 12-hour clock time. (This is ‘%I:%M:%S %p’ in the "C" locale.)

%R Equivalent to specifying ‘%H:%M’.

%S The second as a decimal number (00–60).

%t A TAB character.

%T Equivalent to specifying ‘%H:%M:%S’.

%u The weekday as a decimal number (1–7). Monday is day one.

%U The week number of the year (the first Sunday as the first day of week one) as
a decimal number (00–53).

Chapter 9: Functions 171

%V The week number of the year (the first Monday as the first day of week one) as
a decimal number (01–53). The method for determining the week number is as
specified by ISO 8601. (To wit: if the week containing January 1 has four or
more days in the new year, then it is week one; otherwise it is week 53 of the
previous year and the next week is week one.)

%w The weekday as a decimal number (0–6). Sunday is day zero.

%W The week number of the year (the first Monday as the first day of week one) as
a decimal number (00–53).

%x The locale’s “appropriate” date representation. (This is ‘%A %B %d %Y’ in the
"C" locale.)

%X The locale’s “appropriate” time representation. (This is ‘%T’ in the "C" locale.)

%y The year modulo 100 as a decimal number (00–99).

%Y The full year as a decimal number (e.g., 2011).

%z The timezone offset in a +HHMM format (e.g., the format necessary to produce
RFC 822/RFC 1036 date headers).

%Z The time zone name or abbreviation; no characters if no time zone is deter-
minable.

%Ec %EC %Ex %EX %Ey %EY %Od %Oe %OH

%OI %Om %OM %OS %Ou %OU %OV %Ow %OW %Oy

“Alternate representations” for the specifications that use only the second letter
(‘%c’, ‘%C’, and so on).14 (These facilitate compliance with the POSIX date

utility.)

%% A literal ‘%’.

If a conversion specifier is not one of the above, the behavior is undefined.15

Informally, a locale is the geographic place in which a program is meant to run. For
example, a common way to abbreviate the date September 4, 2012 in the United States
is “9/4/12.” In many countries in Europe, however, it is abbreviated “4.9.12.” Thus, the
‘%x’ specification in a "US" locale might produce ‘9/4/12’, while in a "EUROPE" locale, it
might produce ‘4.9.12’. The ISO C standard defines a default "C" locale, which is an
environment that is typical of what many C programmers are used to.

For systems that are not yet fully standards-compliant, gawk supplies a copy
of strftime() from the GNU C Library. It supports all of the just-listed format
specifications. If that version is used to compile gawk (see Appendix B [Installing gawk],
page 313), then the following additional format specifications are available:

%k The hour (24-hour clock) as a decimal number (0–23). Single-digit numbers are
padded with a space.

14 If you don’t understand any of this, don’t worry about it; these facilities are meant to make it easier to
“internationalize” programs. Other internationalization features are described in Chapter 10 [Interna-
tionalization with gawk], page 189.

15 This is because ISO C leaves the behavior of the C version of strftime() undefined and gawk uses the
system’s version of strftime() if it’s there. Typically, the conversion specifier either does not appear in
the returned string or appears literally.

172 GAWK: Effective AWK Programming

%l The hour (12-hour clock) as a decimal number (1–12). Single-digit numbers are
padded with a space.

%s The time as a decimal timestamp in seconds since the epoch.

Additionally, the alternate representations are recognized but their normal representa-
tions are used.

The following example is an awk implementation of the POSIX date utility. Normally,
the date utility prints the current date and time of day in a well-known format. However,
if you provide an argument to it that begins with a ‘+’, date copies nonformat specifier
characters to the standard output and interprets the current time according to the format
specifiers in the string. For example:

$ date ’+Today is %A, %B %d, %Y.’

a Today is Wednesday, March 30, 2011.

Here is the gawk version of the date utility. It has a shell “wrapper” to handle the -u

option, which requires that date run as if the time zone is set to UTC:

#! /bin/sh

#

date --- approximate the POSIX ’date’ command

case $1 in

-u) TZ=UTC0 # use UTC

export TZ

shift ;;

esac

gawk ’BEGIN {

format = "%a %b %e %H:%M:%S %Z %Y"

exitval = 0

if (ARGC > 2)

exitval = 1

else if (ARGC == 2) {

format = ARGV[1]

if (format ~ /^\+/)

format = substr(format, 2) # remove leading +

}

print strftime(format)

exit exitval

}’ "$@"

9.1.6 Bit-Manipulation Functions

I can explain it for you, but I can’t understand it for you.
Anonymous

Many languages provide the ability to perform bitwise operations on two integer num-
bers. In other words, the operation is performed on each successive pair of bits in the

Chapter 9: Functions 173

operands. Three common operations are bitwise AND, OR, and XOR. The operations are
described in Table 9.6.

Bit operator

AND OR XOR
Operands 0 1 0 1 0 1

0 0 0 0 1 0 1
1 0 1 1 1 1 0

Table 9.6: Bitwise Operations

As you can see, the result of an AND operation is 1 only when both bits are 1. The
result of an OR operation is 1 if either bit is 1. The result of an XOR operation is 1 if
either bit is 1, but not both. The next operation is the complement; the complement of 1
is 0 and the complement of 0 is 1. Thus, this operation “flips” all the bits of a given value.

Finally, two other common operations are to shift the bits left or right. For example,
if you have a bit string ‘10111001’ and you shift it right by three bits, you end up with
‘00010111’.16 If you start over again with ‘10111001’ and shift it left by three bits, you end
up with ‘11001000’. gawk provides built-in functions that implement the bitwise operations
just described. They are:

and(v1, v2)

Return the bitwise AND of the values provided by v1 and v2.

compl(val)

Return the bitwise complement of val.

lshift(val, count)

Return the value of val, shifted left by count bits.

or(v1, v2)

Return the bitwise OR of the values provided by v1 and v2.

rshift(val, count)

Return the value of val, shifted right by count bits.

xor(v1, v2)

Return the bitwise XOR of the values provided by v1 and v2.

For all of these functions, first the double precision floating-point value is converted to
the widest C unsigned integer type, then the bitwise operation is performed. If the result
cannot be represented exactly as a C double, leading nonzero bits are removed one by one
until it can be represented exactly. The result is then converted back into a C double. (If
you don’t understand this paragraph, don’t worry about it.)

Here is a user-defined function (see Section 9.2 [User-Defined Functions], page 175) that
illustrates the use of these functions:

16 This example shows that 0’s come in on the left side. For gawk, this is always true, but in some languages,
it’s possible to have the left side fill with 1’s. Caveat emptor.

174 GAWK: Effective AWK Programming

bits2str --- turn a byte into readable 1’s and 0’s

function bits2str(bits, data, mask)

{

if (bits == 0)

return "0"

mask = 1

for (; bits != 0; bits = rshift(bits, 1))

data = (and(bits, mask) ? "1" : "0") data

while ((length(data) % 8) != 0)

data = "0" data

return data

}

BEGIN {

printf "123 = %s\n", bits2str(123)

printf "0123 = %s\n", bits2str(0123)

printf "0x99 = %s\n", bits2str(0x99)

comp = compl(0x99)

printf "compl(0x99) = %#x = %s\n", comp, bits2str(comp)

shift = lshift(0x99, 2)

printf "lshift(0x99, 2) = %#x = %s\n", shift, bits2str(shift)

shift = rshift(0x99, 2)

printf "rshift(0x99, 2) = %#x = %s\n", shift, bits2str(shift)

}

This program produces the following output when run:

$ gawk -f testbits.awk

a 123 = 01111011

a 0123 = 01010011

a 0x99 = 10011001

a compl(0x99) = 0xffffff66 = 11111111111111111111111101100110

a lshift(0x99, 2) = 0x264 = 0000001001100100

a rshift(0x99, 2) = 0x26 = 00100110

The bits2str() function turns a binary number into a string. The number 1 represents
a binary value where the rightmost bit is set to 1. Using this mask, the function repeatedly
checks the rightmost bit. ANDing the mask with the value indicates whether the rightmost
bit is 1 or not. If so, a "1" is concatenated onto the front of the string. Otherwise, a "0"

is added. The value is then shifted right by one bit and the loop continues until there are
no more 1 bits.

If the initial value is zero it returns a simple "0". Otherwise, at the end, it pads the value
with zeros to represent multiples of 8-bit quantities. This is typical in modern computers.

Chapter 9: Functions 175

The main code in the BEGIN rule shows the difference between the decimal and octal val-
ues for the same numbers (see Section 6.1.1.2 [Octal and Hexadecimal Numbers], page 91),
and then demonstrates the results of the compl(), lshift(), and rshift() functions.

9.1.7 Getting Type Information

gawk provides a single function that lets you distinguish an array from a scalar variable.
This is necessary for writing code that traverses every element of a true multidimensional
array (see Section 8.6 [Arrays of Arrays], page 148).

isarray(x)

Return a true value if x is an array. Otherwise return false.

9.1.8 String-Translation Functions

gawk provides facilities for internationalizing awk programs. These include the functions
described in the following list. The descriptions here are purposely brief. See Chapter 10
[Internationalization with gawk], page 189, for the full story. Optional parameters are
enclosed in square brackets ([]):

bindtextdomain(directory [, domain])
Set the directory in which gawk will look for message translation files, in case
they will not or cannot be placed in the “standard” locations (e.g., during
testing). It returns the directory in which domain is “bound.”

The default domain is the value of TEXTDOMAIN. If directory is the null string
(""), then bindtextdomain() returns the current binding for the given domain.

dcgettext(string [, domain [, category]])
Return the translation of string in text domain domain for locale category
category. The default value for domain is the current value of TEXTDOMAIN.
The default value for category is "LC_MESSAGES".

dcngettext(string1, string2, number [, domain [, category]])
Return the plural form used for number of the translation of string1 and string2
in text domain domain for locale category category. string1 is the English
singular variant of a message, and string2 the English plural variant of the same
message. The default value for domain is the current value of TEXTDOMAIN. The
default value for category is "LC_MESSAGES".

9.2 User-Defined Functions

Complicated awk programs can often be simplified by defining your own functions. User-
defined functions can be called just like built-in ones (see Section 6.4 [Function Calls],
page 109), but it is up to you to define them, i.e., to tell awk what they should do.

9.2.1 Function Definition Syntax

Definitions of functions can appear anywhere between the rules of an awk program. Thus,
the general form of an awk program is extended to include sequences of rules and user-
defined function definitions. There is no need to put the definition of a function before all
uses of the function. This is because awk reads the entire program before starting to execute
any of it.

176 GAWK: Effective AWK Programming

The definition of a function named name looks like this:

function name([parameter-list])
{

body-of-function

}

Here, name is the name of the function to define. A valid function name is like a valid
variable name: a sequence of letters, digits, and underscores that doesn’t start with a digit.
Within a single awk program, any particular name can only be used as a variable, array, or
function.

parameter-list is an optional list of the function’s arguments and local variable names,
separated by commas. When the function is called, the argument names are used to hold
the argument values given in the call. The local variables are initialized to the empty string.
A function cannot have two parameters with the same name, nor may it have a parameter
with the same name as the function itself.

In addition, according to the POSIX standard, function parameters cannot have the same
name as one of the special built-in variables (see Section 7.5 [Built-in Variables], page 128.
Not all versions of awk enforce this restriction.

The body-of-function consists of awk statements. It is the most important part of the
definition, because it says what the function should actually do. The argument names exist
to give the body a way to talk about the arguments; local variables exist to give the body
places to keep temporary values.

Argument names are not distinguished syntactically from local variable names. Instead,
the number of arguments supplied when the function is called determines how many argu-
ment variables there are. Thus, if three argument values are given, the first three names in
parameter-list are arguments and the rest are local variables.

It follows that if the number of arguments is not the same in all calls to the function,
some of the names in parameter-list may be arguments on some occasions and local variables
on others. Another way to think of this is that omitted arguments default to the null string.

Usually when you write a function, you know how many names you intend to use for
arguments and how many you intend to use as local variables. It is conventional to place
some extra space between the arguments and the local variables, in order to document how
your function is supposed to be used.

During execution of the function body, the arguments and local variable values hide, or
shadow, any variables of the same names used in the rest of the program. The shadowed
variables are not accessible in the function definition, because there is no way to name them
while their names have been taken away for the local variables. All other variables used in
the awk program can be referenced or set normally in the function’s body.

The arguments and local variables last only as long as the function body is executing.
Once the body finishes, you can once again access the variables that were shadowed while
the function was running.

The function body can contain expressions that call functions. They can even call this
function, either directly or by way of another function. When this happens, we say the
function is recursive. The act of a function calling itself is called recursion.

All the built-in functions return a value to their caller. User-defined functions can do
also, using the return statement, which is described in detail in Section 9.2.4 [The return

Chapter 9: Functions 177

Statement], page 182. Many of the subsequent examples in this section use the return

statement.

In many awk implementations, including gawk, the keyword function may be abbre-
viated func. (c.e.) However, POSIX only specifies the use of the keyword function.
This actually has some practical implications. If gawk is in POSIX-compatibility mode
(see Section 2.2 [Command-Line Options], page 25), then the following statement does not
define a function:

func foo() { a = sqrt($1) ; print a }

Instead it defines a rule that, for each record, concatenates the value of the variable ‘func’
with the return value of the function ‘foo’. If the resulting string is non-null, the action
is executed. This is probably not what is desired. (awk accepts this input as syntactically
valid, because functions may be used before they are defined in awk programs.17)

To ensure that your awk programs are portable, always use the keyword function when
defining a function.

9.2.2 Function Definition Examples

Here is an example of a user-defined function, called myprint(), that takes a number and
prints it in a specific format:

function myprint(num)

{

printf "%6.3g\n", num

}

To illustrate, here is an awk rule that uses our myprint function:

$3 > 0 { myprint($3) }

This program prints, in our special format, all the third fields that contain a positive number
in our input. Therefore, when given the following input:

1.2 3.4 5.6 7.8

9.10 11.12 -13.14 15.16

17.18 19.20 21.22 23.24

this program, using our function to format the results, prints:

5.6

21.2

This function deletes all the elements in an array:

function delarray(a, i)

{

for (i in a)

delete a[i]

}

When working with arrays, it is often necessary to delete all the elements in an array and
start over with a new list of elements (see Section 8.2 [The delete Statement], page 144).
Instead of having to repeat this loop everywhere that you need to clear out an array, your

17 This program won’t actually run, since foo() is undefined.

178 GAWK: Effective AWK Programming

program can just call delarray. (This guarantees portability. The use of ‘delete array’
to delete the contents of an entire array is a nonstandard extension.)

The following is an example of a recursive function. It takes a string as an input param-
eter and returns the string in backwards order. Recursive functions must always have a test
that stops the recursion. In this case, the recursion terminates when the starting position
is zero, i.e., when there are no more characters left in the string.

function rev(str, start)

{

if (start == 0)

return ""

return (substr(str, start, 1) rev(str, start - 1))

}

If this function is in a file named rev.awk, it can be tested this way:

$ echo "Don’t Panic!" |

> gawk --source ’{ print rev($0, length($0)) }’ -f rev.awk

a !cinaP t’noD

The C ctime() function takes a timestamp and returns it in a string, formatted in
a well-known fashion. The following example uses the built-in strftime() function (see
Section 9.1.5 [Time Functions], page 168) to create an awk version of ctime():

ctime.awk

#

awk version of C ctime(3) function

function ctime(ts, format)

{

format = "%a %b %e %H:%M:%S %Z %Y"

if (ts == 0)

ts = systime() # use current time as default

return strftime(format, ts)

}

9.2.3 Calling User-Defined Functions

This section describes how to call a user-defined function.

9.2.3.1 Writing A Function Call

Calling a function means causing the function to run and do its job. A function call is an
expression and its value is the value returned by the function.

A function call consists of the function name followed by the arguments in parentheses.
awk expressions are what you write in the call for the arguments. Each time the call is
executed, these expressions are evaluated, and the values become the actual arguments. For
example, here is a call to foo() with three arguments (the first being a string concatenation):

foo(x y, "lose", 4 * z)

CAUTION: Whitespace characters (spaces and TABs) are not allowed between
the function name and the open-parenthesis of the argument list. If you write

Chapter 9: Functions 179

whitespace by mistake, awkmight think that you mean to concatenate a variable
with an expression in parentheses. However, it notices that you used a function
name and not a variable name, and reports an error.

9.2.3.2 Controlling Variable Scope

There is no way to make a variable local to a { ... } block in awk, but you can make a
variable local to a function. It is good practice to do so whenever a variable is needed only
in that function.

To make a variable local to a function, simply declare the variable as an argument after
the actual function arguments (see Section 9.2.1 [Function Definition Syntax], page 175).
Look at the following example where variable i is a global variable used by both functions
foo() and bar():

function bar()

{

for (i = 0; i < 3; i++)

print "bar’s i=" i

}

function foo(j)

{

i = j + 1

print "foo’s i=" i

bar()

print "foo’s i=" i

}

BEGIN {

i = 10

print "top’s i=" i

foo(0)

print "top’s i=" i

}

Running this script produces the following, because the i in functions foo() and bar()

and at the top level refer to the same variable instance:

top’s i=10

foo’s i=1

bar’s i=0

bar’s i=1

bar’s i=2

foo’s i=3

top’s i=3

If you want i to be local to both foo() and bar() do as follows (the extra-space before
i is a coding convention to indicate that i is a local variable, not an argument):

function bar(i)

{

180 GAWK: Effective AWK Programming

for (i = 0; i < 3; i++)

print "bar’s i=" i

}

function foo(j, i)

{

i = j + 1

print "foo’s i=" i

bar()

print "foo’s i=" i

}

BEGIN {

i = 10

print "top’s i=" i

foo(0)

print "top’s i=" i

}

Running the corrected script produces the following:

top’s i=10

foo’s i=1

bar’s i=0

bar’s i=1

bar’s i=2

foo’s i=1

top’s i=10

9.2.3.3 Passing Function Arguments By Value Or By Reference

In awk, when you declare a function, there is no way to declare explicitly whether the
arguments are passed by value or by reference.

Instead the passing convention is determined at runtime when the function is called
according to the following rule:

• If the argument is an array variable, then it is passed by reference,

• Otherwise the argument is passed by value.

Passing an argument by value means that when a function is called, it is given a copy of
the value of this argument. The caller may use a variable as the expression for the argument,
but the called function does not know this—it only knows what value the argument had.
For example, if you write the following code:

foo = "bar"

z = myfunc(foo)

then you should not think of the argument to myfunc() as being “the variable foo.” Instead,
think of the argument as the string value "bar". If the function myfunc() alters the values
of its local variables, this has no effect on any other variables. Thus, if myfunc() does this:

function myfunc(str)

Chapter 9: Functions 181

{

print str

str = "zzz"

print str

}

to change its first argument variable str, it does not change the value of foo in the caller.
The role of foo in calling myfunc() ended when its value ("bar") was computed. If str
also exists outside of myfunc(), the function body cannot alter this outer value, because it
is shadowed during the execution of myfunc() and cannot be seen or changed from there.

However, when arrays are the parameters to functions, they are not copied. Instead, the
array itself is made available for direct manipulation by the function. This is usually termed
call by reference. Changes made to an array parameter inside the body of a function are
visible outside that function.

NOTE: Changing an array parameter inside a function can be very dangerous
if you do not watch what you are doing. For example:

function changeit(array, ind, nvalue)

{

array[ind] = nvalue

}

BEGIN {

a[1] = 1; a[2] = 2; a[3] = 3

changeit(a, 2, "two")

printf "a[1] = %s, a[2] = %s, a[3] = %s\n",

a[1], a[2], a[3]

}

prints ‘a[1] = 1, a[2] = two, a[3] = 3’, because changeit stores "two" in the
second element of a.

Some awk implementations allow you to call a function that has not been defined. They
only report a problem at runtime when the program actually tries to call the function. For
example:

BEGIN {

if (0)

foo()

else

bar()

}

function bar() { ... }

note that ‘foo’ is not defined

Because the ‘if’ statement will never be true, it is not really a problem that foo() has not
been defined. Usually, though, it is a problem if a program calls an undefined function.

If --lint is specified (see Section 2.2 [Command-Line Options], page 25), gawk reports
calls to undefined functions.

182 GAWK: Effective AWK Programming

Some awk implementations generate a runtime error if you use the next statement (see
Section 7.4.8 [The next Statement], page 126) inside a user-defined function. gawk does not
have this limitation.

9.2.4 The return Statement

As seen in several earlier examples, the body of a user-defined function can contain a return
statement. This statement returns control to the calling part of the awk program. It can
also be used to return a value for use in the rest of the awk program. It looks like this:

return [expression]

The expression part is optional. Due most likely to an oversight, POSIX does not define
what the return value is if you omit the expression. Technically speaking, this make the
returned value undefined, and therefore, unpredictable. In practice, though, all versions of
awk simply return the null string, which acts like zero if used in a numeric context.

A return statement with no value expression is assumed at the end of every function
definition. So if control reaches the end of the function body, then technically, the function
returns an unpredictable value. In practice, it returns the empty string. awk does not warn
you if you use the return value of such a function.

Sometimes, you want to write a function for what it does, not for what it returns. Such
a function corresponds to a void function in C, C++ or Java, or to a procedure in Ada.
Thus, it may be appropriate to not return any value; simply bear in mind that you should
not be using the return value of such a function.

The following is an example of a user-defined function that returns a value for the largest
number among the elements of an array:

function maxelt(vec, i, ret)

{

for (i in vec) {

if (ret == "" || vec[i] > ret)

ret = vec[i]

}

return ret

}

You call maxelt() with one argument, which is an array name. The local variables i and
ret are not intended to be arguments; while there is nothing to stop you from passing more
than one argument to maxelt(), the results would be strange. The extra space before i in
the function parameter list indicates that i and ret are local variables. You should follow
this convention when defining functions.

The following program uses the maxelt() function. It loads an array, calls maxelt(),
and then reports the maximum number in that array:

function maxelt(vec, i, ret)

{

for (i in vec) {

if (ret == "" || vec[i] > ret)

ret = vec[i]

}

return ret

Chapter 9: Functions 183

}

Load all fields of each record into nums.

{

for(i = 1; i <= NF; i++)

nums[NR, i] = $i

}

END {

print maxelt(nums)

}

Given the following input:

1 5 23 8 16

44 3 5 2 8 26

256 291 1396 2962 100

-6 467 998 1101

99385 11 0 225

the program reports (predictably) that 99,385 is the largest value in the array.

9.2.5 Functions and Their Effects on Variable Typing

awk is a very fluid language. It is possible that awk can’t tell if an identifier represents a
scalar variable or an array until runtime. Here is an annotated sample program:

function foo(a)

{

a[1] = 1 # parameter is an array

}

BEGIN {

b = 1

foo(b) # invalid: fatal type mismatch

foo(x) # x uninitialized, becomes an array dynamically

x = 1 # now not allowed, runtime error

}

Usually, such things aren’t a big issue, but it’s worth being aware of them.

9.3 Indirect Function Calls

This section describes a gawk-specific extension.

Often, you may wish to defer the choice of function to call until runtime. For example,
you may have different kinds of records, each of which should be processed differently.

Normally, you would have to use a series of if-else statements to decide which function
to call. By using indirect function calls, you can specify the name of the function to call as
a string variable, and then call the function. Let’s look at an example.

Suppose you have a file with your test scores for the classes you are taking. The first
field is the class name. The following fields are the functions to call to process the data, up

184 GAWK: Effective AWK Programming

to a “marker” field ‘data:’. Following the marker, to the end of the record, are the various
numeric test scores.

Here is the initial file; you wish to get the sum and the average of your test scores:

Biology_101 sum average data: 87.0 92.4 78.5 94.9

Chemistry_305 sum average data: 75.2 98.3 94.7 88.2

English_401 sum average data: 100.0 95.6 87.1 93.4

To process the data, you might write initially:

{

class = $1

for (i = 2; $i != "data:"; i++) {

if ($i == "sum")

sum() # processes the whole record

else if ($i == "average")

average()

... # and so on

}

}

This style of programming works, but can be awkward. With indirect function calls, you
tell gawk to use the value of a variable as the name of the function to call.

The syntax is similar to that of a regular function call: an identifier immediately followed
by a left parenthesis, any arguments, and then a closing right parenthesis, with the addition
of a leading ‘@’ character:

the_func = "sum"

result = @the_func() # calls the ‘sum’ function

Here is a full program that processes the previously shown data, using indirect function
calls.

indirectcall.awk --- Demonstrate indirect function calls

average --- return the average of the values in fields $first - $last

function average(first, last, sum, i)

{

sum = 0;

for (i = first; i <= last; i++)

sum += $i

return sum / (last - first + 1)

}

sum --- return the sum of the values in fields $first - $last

function sum(first, last, ret, i)

{

ret = 0;

for (i = first; i <= last; i++)

Chapter 9: Functions 185

ret += $i

return ret

}

These two functions expect to work on fields; thus the parameters first and last indi-
cate where in the fields to start and end. Otherwise they perform the expected computations
and are not unusual.

For each record, print the class name and the requested statistics

{

class_name = $1

gsub(/_/, " ", class_name) # Replace _ with spaces

find start

for (i = 1; i <= NF; i++) {

if ($i == "data:") {

start = i + 1

break

}

}

printf("%s:\n", class_name)

for (i = 2; $i != "data:"; i++) {

the_function = $i

printf("\t%s: <%s>\n", $i, @the_function(start, NF) "")

}

print ""

}

This is the main processing for each record. It prints the class name (with underscores
replaced with spaces). It then finds the start of the actual data, saving it in start. The
last part of the code loops through each function name (from $2 up to the marker, ‘data:’),
calling the function named by the field. The indirect function call itself occurs as a param-
eter in the call to printf. (The printf format string uses ‘%s’ as the format specifier so
that we can use functions that return strings, as well as numbers. Note that the result from
the indirect call is concatenated with the empty string, in order to force it to be a string
value.)

Here is the result of running the program:

$ gawk -f indirectcall.awk class_data1

a Biology 101:

a sum: <352.8>

a average: <88.2>

a
a Chemistry 305:

a sum: <356.4>

a average: <89.1>

a

186 GAWK: Effective AWK Programming

a English 401:

a sum: <376.1>

a average: <94.025>

The ability to use indirect function calls is more powerful than you may think at first.
The C and C++ languages provide “function pointers,” which are a mechanism for calling
a function chosen at runtime. One of the most well-known uses of this ability is the C
qsort() function, which sorts an array using the famous “quick sort” algorithm (see the
Wikipedia article for more information). To use this function, you supply a pointer to a
comparison function. This mechanism allows you to sort arbitrary data in an arbitrary
fashion.

We can do something similar using gawk, like this:

quicksort.awk --- Quicksort algorithm, with user-supplied

comparison function

quicksort --- C.A.R. Hoare’s quick sort algorithm. See Wikipedia

or almost any algorithms or computer science text

function quicksort(data, left, right, less_than, i, last)

{

if (left >= right) # do nothing if array contains fewer

return # than two elements

quicksort_swap(data, left, int((left + right) / 2))

last = left

for (i = left + 1; i <= right; i++)

if (@less_than(data[i], data[left]))

quicksort_swap(data, ++last, i)

quicksort_swap(data, left, last)

quicksort(data, left, last - 1, less_than)

quicksort(data, last + 1, right, less_than)

}

quicksort_swap --- helper function for quicksort, should really be inline

function quicksort_swap(data, i, j, temp)

{

temp = data[i]

data[i] = data[j]

data[j] = temp

}

The quicksort() function receives the data array, the starting and ending indices to
sort (left and right), and the name of a function that performs a “less than” comparison.
It then implements the quick sort algorithm.

To make use of the sorting function, we return to our previous example. The first thing
to do is write some comparison functions:

num_lt --- do a numeric less than comparison

http://en.wikipedia.org/wiki/Quick_sort
http://en.wikipedia.org/wiki/Quick_sort

Chapter 9: Functions 187

function num_lt(left, right)

{

return ((left + 0) < (right + 0))

}

num_ge --- do a numeric greater than or equal to comparison

function num_ge(left, right)

{

return ((left + 0) >= (right + 0))

}

The num_ge() function is needed to perform a descending sort; when used to perform a
“less than” test, it actually does the opposite (greater than or equal to), which yields data
sorted in descending order.

Next comes a sorting function. It is parameterized with the starting and ending field
numbers and the comparison function. It builds an array with the data and calls quicksort
appropriately, and then formats the results as a single string:

do_sort --- sort the data according to ‘compare’

and return it as a string

function do_sort(first, last, compare, data, i, retval)

{

delete data

for (i = 1; first <= last; first++) {

data[i] = $first

i++

}

quicksort(data, 1, i-1, compare)

retval = data[1]

for (i = 2; i in data; i++)

retval = retval " " data[i]

return retval

}

Finally, the two sorting functions call do_sort(), passing in the names of the two com-
parison functions:

sort --- sort the data in ascending order and return it as a string

function sort(first, last)

{

return do_sort(first, last, "num_lt")

}

188 GAWK: Effective AWK Programming

rsort --- sort the data in descending order and return it as a string

function rsort(first, last)

{

return do_sort(first, last, "num_ge")

}

Here is an extended version of the data file:

Biology_101 sum average sort rsort data: 87.0 92.4 78.5 94.9

Chemistry_305 sum average sort rsort data: 75.2 98.3 94.7 88.2

English_401 sum average sort rsort data: 100.0 95.6 87.1 93.4

Finally, here are the results when the enhanced program is run:

$ gawk -f quicksort.awk -f indirectcall.awk class_data2

a Biology 101:

a sum: <352.8>

a average: <88.2>

a sort: <78.5 87.0 92.4 94.9>

a rsort: <94.9 92.4 87.0 78.5>

a
a Chemistry 305:

a sum: <356.4>

a average: <89.1>

a sort: <75.2 88.2 94.7 98.3>

a rsort: <98.3 94.7 88.2 75.2>

a
a English 401:

a sum: <376.1>

a average: <94.025>

a sort: <87.1 93.4 95.6 100.0>

a rsort: <100.0 95.6 93.4 87.1>

Remember that you must supply a leading ‘@’ in front of an indirect function call.

Unfortunately, indirect function calls cannot be used with the built-in functions. How-
ever, you can generally write “wrapper” functions which call the built-in ones, and those
can be called indirectly. (Other than, perhaps, the mathematical functions, there is not a
lot of reason to try to call the built-in functions indirectly.)

gawk does its best to make indirect function calls efficient. For example, in the following
case:

for (i = 1; i <= n; i++)

@the_func()

gawk will look up the actual function to call only once.

Chapter 10: Internationalization with gawk 189

10 Internationalization with gawk

Once upon a time, computer makers wrote software that worked only in English. Even-
tually, hardware and software vendors noticed that if their systems worked in the native
languages of non-English-speaking countries, they were able to sell more systems. As a
result, internationalization and localization of programs and software systems became a
common practice.

For many years, the ability to provide internationalization was largely restricted to
programs written in C and C++. This chapter describes the underlying library gawk uses
for internationalization, as well as how gawk makes internationalization features available at
the awk program level. Having internationalization available at the awk level gives software
developers additional flexibility—they are no longer forced to write in C or C++ when
internationalization is a requirement.

10.1 Internationalization and Localization

Internationalization means writing (or modifying) a program once, in such a way that it
can use multiple languages without requiring further source-code changes. Localization
means providing the data necessary for an internationalized program to work in a partic-
ular language. Most typically, these terms refer to features such as the language used for
printing error messages, the language used to read responses, and information related to
how numerical and monetary values are printed and read.

10.2 GNU gettext

The facilities in GNU gettext focus on messages; strings printed by a program, either
directly or via formatting with printf or sprintf().1

When using GNU gettext, each application has its own text domain. This is a unique
name, such as ‘kpilot’ or ‘gawk’, that identifies the application. A complete application
may have multiple components—programs written in C or C++, as well as scripts written
in sh or awk. All of the components use the same text domain.

To make the discussion concrete, assume we’re writing an application named guide.
Internationalization consists of the following steps, in this order:

1. The programmer goes through the source for all of guide’s components and marks each
string that is a candidate for translation. For example, "‘-F’: option required" is
a good candidate for translation. A table with strings of option names is not (e.g.,
gawk’s --profile option should remain the same, no matter what the local language).

2. The programmer indicates the application’s text domain ("guide") to the gettext

library, by calling the textdomain() function.

3. Messages from the application are extracted from the source code and collected into a
portable object template file (guide.pot), which lists the strings and their translations.
The translations are initially empty. The original (usually English) messages serve as
the key for lookup of the translations.

1 For some operating systems, the gawk port doesn’t support GNU gettext. Therefore, these features are
not available if you are using one of those operating systems. Sorry.

190 GAWK: Effective AWK Programming

4. For each language with a translator, guide.pot is copied to a portable object file
(.po) and translations are created and shipped with the application. For example,
there might be a fr.po for a French translation.

5. Each language’s .po file is converted into a binary message object (.mo) file. A message
object file contains the original messages and their translations in a binary format that
allows fast lookup of translations at runtime.

6. When guide is built and installed, the binary translation files are installed in a standard
place.

7. For testing and development, it is possible to tell gettext to use .mo files in a different
directory than the standard one by using the bindtextdomain() function.

8. At runtime, guide looks up each string via a call to gettext(). The returned string
is the translated string if available, or the original string if not.

9. If necessary, it is possible to access messages from a different text domain than the one
belonging to the application, without having to switch the application’s default text
domain back and forth.

In C (or C++), the string marking and dynamic translation lookup are accomplished by
wrapping each string in a call to gettext():

printf("%s", gettext("Don’t Panic!\n"));

The tools that extract messages from source code pull out all strings enclosed in calls to
gettext().

The GNU gettext developers, recognizing that typing ‘gettext(...)’ over and over
again is both painful and ugly to look at, use the macro ‘_’ (an underscore) to make things
easier:

/* In the standard header file: */

#define _(str) gettext(str)

/* In the program text: */

printf("%s", _("Don’t Panic!\n"));

This reduces the typing overhead to just three extra characters per string and is considerably
easier to read as well.

There are locale categories for different types of locale-related information. The defined
locale categories that gettext knows about are:

LC_MESSAGES

Text messages. This is the default category for gettext operations, but it is
possible to supply a different one explicitly, if necessary. (It is almost never
necessary to supply a different category.)

LC_COLLATE

Text-collation information; i.e., how different characters and/or groups of char-
acters sort in a given language.

LC_CTYPE Character-type information (alphabetic, digit, upper- or lowercase, and so on).
This information is accessed via the POSIX character classes in regular expres-
sions, such as /[[:alnum:]]/ (see Section 3.3 [Regular Expression Operators],
page 40).

Chapter 10: Internationalization with gawk 191

LC_MONETARY

Monetary information, such as the currency symbol, and whether the symbol
goes before or after a number.

LC_NUMERIC

Numeric information, such as which characters to use for the decimal point and
the thousands separator.2

LC_RESPONSE

Response information, such as how “yes” and “no” appear in the local language,
and possibly other information as well.

LC_TIME Time- and date-related information, such as 12- or 24-hour clock, month printed
before or after the day in a date, local month abbreviations, and so on.

LC_ALL All of the above. (Not too useful in the context of gettext.)

10.3 Internationalizing awk Programs

gawk provides the following variables and functions for internationalization:

TEXTDOMAIN

This variable indicates the application’s text domain. For compatibility with
GNU gettext, the default value is "messages".

_"your message here"

String constants marked with a leading underscore are candidates for transla-
tion at runtime. String constants without a leading underscore are not trans-
lated.

dcgettext(string [, domain [, category]])
Return the translation of string in text domain domain for locale category
category. The default value for domain is the current value of TEXTDOMAIN.
The default value for category is "LC_MESSAGES".

If you supply a value for category, it must be a string equal to one of the known
locale categories described in the previous section. You must also supply a text
domain. Use TEXTDOMAIN if you want to use the current domain.

CAUTION: The order of arguments to the awk version of the
dcgettext() function is purposely different from the order for the
C version. The awk version’s order was chosen to be simple and to
allow for reasonable awk-style default arguments.

dcngettext(string1, string2, number [, domain [, category]])
Return the plural form used for number of the translation of string1 and string2
in text domain domain for locale category category. string1 is the English
singular variant of a message, and string2 the English plural variant of the same
message. The default value for domain is the current value of TEXTDOMAIN. The
default value for category is "LC_MESSAGES".

The same remarks about argument order as for the dcgettext() function apply.

2 Americans use a comma every three decimal places and a period for the decimal point, while many
Europeans do exactly the opposite: 1,234.56 versus 1.234,56.

192 GAWK: Effective AWK Programming

bindtextdomain(directory [, domain])
Change the directory in which gettext looks for .mo files, in case they will not
or cannot be placed in the standard locations (e.g., during testing). Return the
directory in which domain is “bound.”

The default domain is the value of TEXTDOMAIN. If directory is the null string
(""), then bindtextdomain() returns the current binding for the given domain.

To use these facilities in your awk program, follow the steps outlined in the previous
section, like so:

1. Set the variable TEXTDOMAIN to the text domain of your program. This is best done
in a BEGIN rule (see Section 7.1.4 [The BEGIN and END Special Patterns], page 116), or
it can also be done via the -v command-line option (see Section 2.2 [Command-Line
Options], page 25):

BEGIN {

TEXTDOMAIN = "guide"

...

}

2. Mark all translatable strings with a leading underscore (‘_’) character. It must be
adjacent to the opening quote of the string. For example:

print _"hello, world"

x = _"you goofed"

printf(_"Number of users is %d\n", nusers)

3. If you are creating strings dynamically, you can still translate them, using the
dcgettext() built-in function:

message = nusers " users logged in"

message = dcgettext(message, "adminprog")

print message

Here, the call to dcgettext() supplies a different text domain ("adminprog") in which
to find the message, but it uses the default "LC_MESSAGES" category.

4. During development, you might want to put the .mo file in a private directory for
testing. This is done with the bindtextdomain() built-in function:

BEGIN {

TEXTDOMAIN = "guide" # our text domain

if (Testing) {

where to find our files

bindtextdomain("testdir")

joe is in charge of adminprog

bindtextdomain("../joe/testdir", "adminprog")

}

...

}

See Section 10.5 [A Simple Internationalization Example], page 195, for an example
program showing the steps to create and use translations from awk.

Chapter 10: Internationalization with gawk 193

10.4 Translating awk Programs

Once a program’s translatable strings have been marked, they must be extracted to create
the initial .po file. As part of translation, it is often helpful to rearrange the order in which
arguments to printf are output.

gawk’s --gen-pot command-line option extracts the messages and is discussed next.
After that, printf’s ability to rearrange the order for printf arguments at runtime is
covered.

10.4.1 Extracting Marked Strings

Once your awk program is working, and all the strings have been marked and you’ve set
(and perhaps bound) the text domain, it is time to produce translations. First, use the
--gen-pot command-line option to create the initial .pot file:

$ gawk --gen-pot -f guide.awk > guide.pot

When run with --gen-pot, gawk does not execute your program. Instead, it parses it
as usual and prints all marked strings to standard output in the format of a GNU gettext

Portable Object file. Also included in the output are any constant strings that appear as
the first argument to dcgettext() or as the first and second argument to dcngettext().3

See Section 10.5 [A Simple Internationalization Example], page 195, for the full list of steps
to go through to create and test translations for guide.

10.4.2 Rearranging printf Arguments

Format strings for printf and sprintf() (see Section 5.5 [Using printf Statements for
Fancier Printing], page 78) present a special problem for translation. Consider the follow-
ing:4

printf(_"String ‘%s’ has %d characters\n",

string, length(string)))

A possible German translation for this might be:

"%d Zeichen lang ist die Zeichenkette ‘%s’\n"

The problem should be obvious: the order of the format specifications is different from
the original! Even though gettext() can return the translated string at runtime, it cannot
change the argument order in the call to printf.

To solve this problem, printf format specifiers may have an additional optional element,
which we call a positional specifier. For example:

"%2$d Zeichen lang ist die Zeichenkette ‘%1$s’\n"

Here, the positional specifier consists of an integer count, which indicates which argument
to use, and a ‘$’. Counts are one-based, and the format string itself is not included. Thus, in
the following example, ‘string’ is the first argument and ‘length(string)’ is the second:

$ gawk ’BEGIN {

> string = "Dont Panic"

> printf _"%2$d characters live in \"%1$s\"\n",
> string, length(string)

3 The xgettext utility that comes with GNU gettext can handle .awk files.
4 This example is borrowed from the GNU gettext manual.

194 GAWK: Effective AWK Programming

> }’

a 10 characters live in "Dont Panic"

If present, positional specifiers come first in the format specification, before the flags,
the field width, and/or the precision.

Positional specifiers can be used with the dynamic field width and precision capability:

$ gawk ’BEGIN {

> printf("%*.*s\n", 10, 20, "hello")

> printf("%3$*2$.*1$s\n", 20, 10, "hello")

> }’

a hello

a hello

NOTE: When using ‘*’ with a positional specifier, the ‘*’ comes first, then the
integer position, and then the ‘$’. This is somewhat counterintuitive.

gawk does not allow you to mix regular format specifiers and those with positional
specifiers in the same string:

$ gawk ’BEGIN { printf _"%d %3$s\n", 1, 2, "hi" }’

error gawk: cmd. line:1: fatal: must use ‘count$’ on all formats or none

NOTE: There are some pathological cases that gawk may fail to diagnose. In
such cases, the output may not be what you expect. It’s still a bad idea to try
mixing them, even if gawk doesn’t detect it.

Although positional specifiers can be used directly in awk programs, their primary pur-
pose is to help in producing correct translations of format strings into languages different
from the one in which the program is first written.

10.4.3 awk Portability Issues

gawk’s internationalization features were purposely chosen to have as little impact as pos-
sible on the portability of awk programs that use them to other versions of awk. Consider
this program:

BEGIN {

TEXTDOMAIN = "guide"

if (Test_Guide) # set with -v

bindtextdomain("/test/guide/messages")

print _"don’t panic!"

}

As written, it won’t work on other versions of awk. However, it is actually almost portable,
requiring very little change:

• Assignments to TEXTDOMAIN won’t have any effect, since TEXTDOMAIN is not special in
other awk implementations.

• Non-GNU versions of awk treat marked strings as the concatenation of a variable named
_ with the string following it.5 Typically, the variable _ has the null string ("") as its
value, leaving the original string constant as the result.

5 This is good fodder for an “Obfuscated awk” contest.

Chapter 10: Internationalization with gawk 195

• By defining “dummy” functions to replace dcgettext(), dcngettext() and
bindtextdomain(), the awk program can be made to run, but all the messages are
output in the original language. For example:

function bindtextdomain(dir, domain)

{

return dir

}

function dcgettext(string, domain, category)

{

return string

}

function dcngettext(string1, string2, number, domain, category)

{

return (number == 1 ? string1 : string2)

}

• The use of positional specifications in printf or sprintf() is not portable. To support
gettext() at the C level, many systems’ C versions of sprintf() do support positional
specifiers. But it works only if enough arguments are supplied in the function call.
Many versions of awk pass printf formats and arguments unchanged to the underlying
C library version of sprintf(), but only one format and argument at a time. What
happens if a positional specification is used is anybody’s guess. However, since the
positional specifications are primarily for use in translated format strings, and since
non-GNU awks never retrieve the translated string, this should not be a problem in
practice.

10.5 A Simple Internationalization Example

Now let’s look at a step-by-step example of how to internationalize and localize a simple
awk program, using guide.awk as our original source:

BEGIN {

TEXTDOMAIN = "guide"

bindtextdomain(".") # for testing

print _"Don’t Panic"

print _"The Answer Is", 42

print "Pardon me, Zaphod who?"

}

Run ‘gawk --gen-pot’ to create the .pot file:

$ gawk --gen-pot -f guide.awk > guide.pot

This produces:

#: guide.awk:4

msgid "Don’t Panic"

msgstr ""

#: guide.awk:5

196 GAWK: Effective AWK Programming

msgid "The Answer Is"

msgstr ""

This original portable object template file is saved and reused for each language into
which the application is translated. The msgid is the original string and the msgstr is the
translation.

NOTE: Strings not marked with a leading underscore do not appear in the
guide.pot file.

Next, the messages must be translated. Here is a translation to a hypothetical dialect
of English, called “Mellow”:6

$ cp guide.pot guide-mellow.po

Add translations to guide-mellow.po ...

Following are the translations:

#: guide.awk:4

msgid "Don’t Panic"

msgstr "Hey man, relax!"

#: guide.awk:5

msgid "The Answer Is"

msgstr "Like, the scoop is"

The next step is to make the directory to hold the binary message object file and then
to create the guide.mo file. The directory layout shown here is standard for GNU gettext

on GNU/Linux systems. Other versions of gettext may use a different layout:

$ mkdir en_US en_US/LC_MESSAGES

The msgfmt utility does the conversion from human-readable .po file to machine-readable
.mo file. By default, msgfmt creates a file named messages. This file must be renamed and
placed in the proper directory so that gawk can find it:

$ msgfmt guide-mellow.po

$ mv messages en_US/LC_MESSAGES/guide.mo

Finally, we run the program to test it:

$ gawk -f guide.awk

a Hey man, relax!

a Like, the scoop is 42

a Pardon me, Zaphod who?

If the three replacement functions for dcgettext(), dcngettext() and
bindtextdomain() (see Section 10.4.3 [awk Portability Issues], page 194) are in a file
named libintl.awk, then we can run guide.awk unchanged as follows:

$ gawk --posix -f guide.awk -f libintl.awk

a Don’t Panic

a The Answer Is 42

a Pardon me, Zaphod who?

6 Perhaps it would be better if it were called “Hippy.” Ah, well.

Chapter 10: Internationalization with gawk 197

10.6 gawk Can Speak Your Language

gawk itself has been internationalized using the GNU gettext package. (GNU gettext is
described in complete detail in GNU gettext tools.) As of this writing, the latest version of
GNU gettext is version 0.18.1.

If a translation of gawk’s messages exists, then gawk produces usage messages, warnings,
and fatal errors in the local language.

ftp://ftp.gnu.org/gnu/gettext/gettext-0.18.1.tar.gz

Chapter 11: Advanced Features of gawk 199

11 Advanced Features of gawk

Write documentation as if whoever reads it is a violent psychopath who knows
where you live.
Steve English, as quoted by Peter Langston

This chapter discusses advanced features in gawk. It’s a bit of a “grab bag” of items that
are otherwise unrelated to each other. First, a command-line option allows gawk to recognize
nondecimal numbers in input data, not just in awk programs. Then, gawk’s special features
for sorting arrays are presented. Next, two-way I/O, discussed briefly in earlier parts of
this book, is described in full detail, along with the basics of TCP/IP networking. Finally,
gawk can profile an awk program, making it possible to tune it for performance.

Section C.3 [Adding New Built-in Functions to gawk], page 332, discusses the ability to
dynamically add new built-in functions to gawk. As this feature is still immature and likely
to change, its description is relegated to an appendix.

11.1 Allowing Nondecimal Input Data

If you run gawk with the --non-decimal-data option, you can have nondecimal constants
in your input data:

$ echo 0123 123 0x123 |

> gawk --non-decimal-data ’{ printf "%d, %d, %d\n",

> $1, $2, $3 }’

a 83, 123, 291

For this feature to work, write your program so that gawk treats your data as numeric:

$ echo 0123 123 0x123 | gawk ’{ print $1, $2, $3 }’

a 0123 123 0x123

The print statement treats its expressions as strings. Although the fields can act as num-
bers when necessary, they are still strings, so print does not try to treat them numerically.
You may need to add zero to a field to force it to be treated as a number. For example:

$ echo 0123 123 0x123 | gawk --non-decimal-data ’

> { print $1, $2, $3
> print $1 + 0, $2 + 0, $3 + 0 }’

a 0123 123 0x123

a 83 123 291

Because it is common to have decimal data with leading zeros, and because using this
facility could lead to surprising results, the default is to leave it disabled. If you want it,
you must explicitly request it.

CAUTION: Use of this option is not recommended. It can break old programs
very badly. Instead, use the strtonum() function to convert your data (see
Section 6.1.1.2 [Octal and Hexadecimal Numbers], page 91). This makes your
programs easier to write and easier to read, and leads to less surprising results.

200 GAWK: Effective AWK Programming

11.2 Controlling Array Traversal and Array Sorting

gawk lets you control the order in which a ‘for (i in array)’ loop traverses an array.

In addition, two built-in functions, asort() and asorti(), let you sort arrays based on
the array values and indices, respectively. These two functions also provide control over the
sorting criteria used to order the elements during sorting.

11.2.1 Controlling Array Traversal

By default, the order in which a ‘for (i in array)’ loop scans an array is not defined; it
is generally based upon the internal implementation of arrays inside awk.

Often, though, it is desirable to be able to loop over the elements in a particular order
that you, the programmer, choose. gawk lets you do this.

Section 8.1.6 [Using Predefined Array Scanning Orders], page 141, describes how you
can assign special, pre-defined values to PROCINFO["sorted_in"] in order to control the
order in which gawk will traverse an array during a for loop.

In addition, the value of PROCINFO["sorted_in"] can be a function name. This lets you
traverse an array based on any custom criterion. The array elements are ordered according
to the return value of this function. The comparison function should be defined with at
least four arguments:

function comp_func(i1, v1, i2, v2)

{

compare elements 1 and 2 in some fashion

return < 0; 0; or > 0

}

Here, i1 and i2 are the indices, and v1 and v2 are the corresponding values of the
two elements being compared. Either v1 or v2, or both, can be arrays if the array being
traversed contains subarrays as values. (See Section 8.6 [Arrays of Arrays], page 148, for
more information about subarrays.) The three possible return values are interpreted as
follows:

comp_func(i1, v1, i2, v2) < 0

Index i1 comes before index i2 during loop traversal.

comp_func(i1, v1, i2, v2) == 0

Indices i1 and i2 come together but the relative order with respect to each other
is undefined.

comp_func(i1, v1, i2, v2) > 0

Index i1 comes after index i2 during loop traversal.

Our first comparison function can be used to scan an array in numerical order of the
indices:

function cmp_num_idx(i1, v1, i2, v2)

{

numerical index comparison, ascending order

return (i1 - i2)

}

Chapter 11: Advanced Features of gawk 201

Our second function traverses an array based on the string order of the element values
rather than by indices:

function cmp_str_val(i1, v1, i2, v2)

{

string value comparison, ascending order

v1 = v1 ""

v2 = v2 ""

if (v1 < v2)

return -1

return (v1 != v2)

}

The third comparison function makes all numbers, and numeric strings without any
leading or trailing spaces, come out first during loop traversal:

function cmp_num_str_val(i1, v1, i2, v2, n1, n2)

{

numbers before string value comparison, ascending order

n1 = v1 + 0

n2 = v2 + 0

if (n1 == v1)

return (n2 == v2) ? (n1 - n2) : -1

else if (n2 == v2)

return 1

return (v1 < v2) ? -1 : (v1 != v2)

}

Here is a main program to demonstrate how gawk behaves using each of the previous
functions:

BEGIN {

data["one"] = 10

data["two"] = 20

data[10] = "one"

data[100] = 100

data[20] = "two"

f[1] = "cmp_num_idx"

f[2] = "cmp_str_val"

f[3] = "cmp_num_str_val"

for (i = 1; i <= 3; i++) {

printf("Sort function: %s\n", f[i])

PROCINFO["sorted_in"] = f[i]

for (j in data)

printf("\tdata[%s] = %s\n", j, data[j])

print ""

}

}

Here are the results when the program is run:

202 GAWK: Effective AWK Programming

$ gawk -f compdemo.awk

a Sort function: cmp_num_idx Sort by numeric index
a data[two] = 20

a data[one] = 10 Both strings are numerically zero
a data[10] = one

a data[20] = two

a data[100] = 100

a
a Sort function: cmp_str_val Sort by element values as strings
a data[one] = 10

a data[100] = 100 String 100 is less than string 20
a data[two] = 20

a data[10] = one

a data[20] = two

a
a Sort function: cmp_num_str_val Sort all numeric values before all strings
a data[one] = 10

a data[two] = 20

a data[100] = 100

a data[10] = one

a data[20] = two

Consider sorting the entries of a GNU/Linux system password file according to login
name. The following program sorts records by a specific field position and can be used for
this purpose:

sort.awk --- simple program to sort by field position

field position is specified by the global variable POS

function cmp_field(i1, v1, i2, v2)

{

comparison by value, as string, and ascending order

return v1[POS] < v2[POS] ? -1 : (v1[POS] != v2[POS])

}

{

for (i = 1; i <= NF; i++)

a[NR][i] = $i

}

END {

PROCINFO["sorted_in"] = "cmp_field"

if (POS < 1 || POS > NF)

POS = 1

for (i in a) {

for (j = 1; j <= NF; j++)

printf("%s%c", a[i][j], j < NF ? ":" : "")

print ""

Chapter 11: Advanced Features of gawk 203

}

}

The first field in each entry of the password file is the user’s login name, and the fields
are separated by colons. Each record defines a subarray, with each field as an element in
the subarray. Running the program produces the following output:

$ gawk -vPOS=1 -F: -f sort.awk /etc/passwd

a adm:x:3:4:adm:/var/adm:/sbin/nologin

a apache:x:48:48:Apache:/var/www:/sbin/nologin

a avahi:x:70:70:Avahi daemon:/:/sbin/nologin

...

The comparison should normally always return the same value when given a specific
pair of array elements as its arguments. If inconsistent results are returned then the order
is undefined. This behavior can be exploited to introduce random order into otherwise
seemingly ordered data:

function cmp_randomize(i1, v1, i2, v2)

{

random order

return (2 - 4 * rand())

}

As mentioned above, the order of the indices is arbitrary if two elements compare equal.
This is usually not a problem, but letting the tied elements come out in arbitrary order
can be an issue, especially when comparing item values. The partial ordering of the equal
elements may change during the next loop traversal, if other elements are added or removed
from the array. One way to resolve ties when comparing elements with otherwise equal
values is to include the indices in the comparison rules. Note that doing this may make
the loop traversal less efficient, so consider it only if necessary. The following comparison
functions force a deterministic order, and are based on the fact that the indices of two
elements are never equal:

function cmp_numeric(i1, v1, i2, v2)

{

numerical value (and index) comparison, descending order

return (v1 != v2) ? (v2 - v1) : (i2 - i1)

}

function cmp_string(i1, v1, i2, v2)

{

string value (and index) comparison, descending order

v1 = v1 i1

v2 = v2 i2

return (v1 > v2) ? -1 : (v1 != v2)

}

A custom comparison function can often simplify ordered loop traversal, and the sky is
really the limit when it comes to designing such a function.

When string comparisons are made during a sort, either for element values where one
or both aren’t numbers, or for element indices handled as strings, the value of IGNORECASE

204 GAWK: Effective AWK Programming

(see Section 7.5 [Built-in Variables], page 128) controls whether the comparisons treat cor-
responding uppercase and lowercase letters as equivalent or distinct.

Another point to keep in mind is that in the case of subarrays the element values can
themselves be arrays; a production comparison function should use the isarray() function
(see Section 9.1.7 [Getting Type Information], page 175), to check for this, and choose a
defined sorting order for subarrays.

All sorting based on PROCINFO["sorted_in"] is disabled in POSIX mode, since the
PROCINFO array is not special in that case.

As a side note, sorting the array indices before traversing the array has been reported to
add 15% to 20% overhead to the execution time of awk programs. For this reason, sorted
array traversal is not the default.

11.2.2 Sorting Array Values and Indices with gawk

In most awk implementations, sorting an array requires writing a sort() function. While
this can be educational for exploring different sorting algorithms, usually that’s not the
point of the program. gawk provides the built-in asort() and asorti() functions (see
Section 9.1.3 [String-Manipulation Functions], page 153) for sorting arrays. For example:

populate the array data

n = asort(data)

for (i = 1; i <= n; i++)

do something with data[i]

After the call to asort(), the array data is indexed from 1 to some number n, the total
number of elements in data. (This count is asort()’s return value.) data[1] ≤ data[2] ≤
data[3], and so on. The comparison is based on the type of the elements (see Section 6.3.2
[Variable Typing and Comparison Expressions], page 104). All numeric values come before
all string values, which in turn come before all subarrays.

An important side effect of calling asort() is that the array’s original indices are irre-
vocably lost. As this isn’t always desirable, asort() accepts a second argument:

populate the array source

n = asort(source, dest)

for (i = 1; i <= n; i++)

do something with dest[i]

In this case, gawk copies the source array into the dest array and then sorts dest,
destroying its indices. However, the source array is not affected.

asort() accepts a third string argument to control comparison of array elements. As
with PROCINFO["sorted_in"], this argument may be one of the predefined names that
gawk provides (see Section 8.1.6 [Using Predefined Array Scanning Orders], page 141),
or the name of a user-defined function (see Section 11.2.1 [Controlling Array Traversal],
page 200).

NOTE: In all cases, the sorted element values consist of the original array’s
element values. The ability to control comparison merely affects the way in
which they are sorted.

Often, what’s needed is to sort on the values of the indices instead of the values of the
elements. To do that, use the asorti() function. The interface is identical to that of

Chapter 11: Advanced Features of gawk 205

asort(), except that the index values are used for sorting, and become the values of the
result array:

{ source[$0] = some_func($0) }

END {

n = asorti(source, dest)

for (i = 1; i <= n; i++) {

Work with sorted indices directly:
do something with dest[i]

...

Access original array via sorted indices:
do something with source[dest[i]]

}

}

Similar to asort(), in all cases, the sorted element values consist of the original array’s
indices. The ability to control comparison merely affects the way in which they are sorted.

Sorting the array by replacing the indices provides maximal flexibility. To traverse the
elements in decreasing order, use a loop that goes from n down to 1, either over the elements
or over the indices.1

Copying array indices and elements isn’t expensive in terms of memory. Internally, gawk
maintains reference counts to data. For example, when asort() copies the first array to
the second one, there is only one copy of the original array elements’ data, even though
both arrays use the values.

Because IGNORECASE affects string comparisons, the value of IGNORECASE also affects
sorting for both asort() and asorti(). Note also that the locale’s sorting order does not
come into play; comparisons are based on character values only.2 Caveat Emptor.

11.3 Two-Way Communications with Another Process
From: brennan@whidbey.com (Mike Brennan)

Newsgroups: comp.lang.awk

Subject: Re: Learn the SECRET to Attract Women Easily

Date: 4 Aug 1997 17:34:46 GMT

Message-ID: <5s53rm$eca@news.whidbey.com>

On 3 Aug 1997 13:17:43 GMT, Want More Dates???

<tracy78@kilgrona.com> wrote:

>Learn the SECRET to Attract Women Easily

>

>The SCENT(tm) Pheromone Sex Attractant For Men to Attract Women

The scent of awk programmers is a lot more attractive to women than

the scent of perl programmers.

--

Mike Brennan

1 You may also use one of the predefined sorting names that sorts in decreasing order.
2 This is true because locale-based comparison occurs only when in POSIX compatibility mode, and since
asort() and asorti() are gawk extensions, they are not available in that case.

206 GAWK: Effective AWK Programming

It is often useful to be able to send data to a separate program for processing and then
read the result. This can always be done with temporary files:

Write the data for processing

tempfile = ("mydata." PROCINFO["pid"])

while (not done with data)

print data | ("subprogram > " tempfile)

close("subprogram > " tempfile)

Read the results, remove tempfile when done

while ((getline newdata < tempfile) > 0)

process newdata appropriately

close(tempfile)

system("rm " tempfile)

This works, but not elegantly. Among other things, it requires that the program be run in
a directory that cannot be shared among users; for example, /tmp will not do, as another
user might happen to be using a temporary file with the same name.

However, with gawk, it is possible to open a two-way pipe to another process. The second
process is termed a coprocess, since it runs in parallel with gawk. The two-way connection
is created using the ‘|&’ operator (borrowed from the Korn shell, ksh):3

do {

print data |& "subprogram"

"subprogram" |& getline results

} while (data left to process)

close("subprogram")

The first time an I/O operation is executed using the ‘|&’ operator, gawk creates a two-
way pipeline to a child process that runs the other program. Output created with print

or printf is written to the program’s standard input, and output from the program’s
standard output can be read by the gawk program using getline. As is the case with
processes started by ‘|’, the subprogram can be any program, or pipeline of programs, that
can be started by the shell.

There are some cautionary items to be aware of:

• As the code inside gawk currently stands, the coprocess’s standard error goes to the
same place that the parent gawk’s standard error goes. It is not possible to read the
child’s standard error separately.

• I/O buffering may be a problem. gawk automatically flushes all output down the pipe
to the coprocess. However, if the coprocess does not flush its output, gawk may hang
when doing a getline in order to read the coprocess’s results. This could lead to a
situation known as deadlock, where each process is waiting for the other one to do
something.

It is possible to close just one end of the two-way pipe to a coprocess, by supplying a
second argument to the close() function of either "to" or "from" (see Section 5.8 [Closing
Input and Output Redirections], page 88). These strings tell gawk to close the end of the
pipe that sends data to the coprocess or the end that reads from it, respectively.

3 This is very different from the same operator in the C shell.

Chapter 11: Advanced Features of gawk 207

This is particularly necessary in order to use the system sort utility as part of a co-
process; sort must read all of its input data before it can produce any output. The sort

program does not receive an end-of-file indication until gawk closes the write end of the
pipe.

When you have finished writing data to the sort utility, you can close the "to" end of
the pipe, and then start reading sorted data via getline. For example:

BEGIN {

command = "LC_ALL=C sort"

n = split("abcdefghijklmnopqrstuvwxyz", a, "")

for (i = n; i > 0; i--)

print a[i] |& command

close(command, "to")

while ((command |& getline line) > 0)

print "got", line

close(command)

}

This program writes the letters of the alphabet in reverse order, one per line, down the
two-way pipe to sort. It then closes the write end of the pipe, so that sort receives an
end-of-file indication. This causes sort to sort the data and write the sorted data back to
the gawk program. Once all of the data has been read, gawk terminates the coprocess and
exits.

As a side note, the assignment ‘LC_ALL=C’ in the sort command ensures traditional Unix
(ASCII) sorting from sort.

You may also use pseudo-ttys (ptys) for two-way communication instead of pipes, if your
system supports them. This is done on a per-command basis, by setting a special element
in the PROCINFO array (see Section 7.5.2 [Built-in Variables That Convey Information],
page 131), like so:

command = "sort -nr" # command, save in convenience variable

PROCINFO[command, "pty"] = 1 # update PROCINFO

print ... |& command # start two-way pipe

...

Using ptys avoids the buffer deadlock issues described earlier, at some loss in performance.
If your system does not have ptys, or if all the system’s ptys are in use, gawk automatically
falls back to using regular pipes.

11.4 Using gawk for Network Programming

EMISTERED:
A host is a host from coast to coast,
and no-one can talk to host that’s close,
unless the host that isn’t close
is busy hung or dead.

In addition to being able to open a two-way pipeline to a coprocess on the same system
(see Section 11.3 [Two-Way Communications with Another Process], page 205), it is possible

208 GAWK: Effective AWK Programming

to make a two-way connection to another process on another system across an IP network
connection.

You can think of this as just a very long two-way pipeline to a coprocess. The way gawk

decides that you want to use TCP/IP networking is by recognizing special file names that
begin with one of ‘/inet/’, ‘/inet4/’ or ‘/inet6’.

The full syntax of the special file name is /net-type/protocol/local-port/remote-
host/remote-port. The components are:

net-type Specifies the kind of Internet connection to make. Use ‘/inet4/’ to force IPv4,
and ‘/inet6/’ to force IPv6. Plain ‘/inet/’ (which used to be the only option)
uses the system default, most likely IPv4.

protocol The protocol to use over IP. This must be either ‘tcp’, or ‘udp’, for a TCP or
UDP IP connection, respectively. The use of TCP is recommended for most
applications.

local-port The local TCP or UDP port number to use. Use a port number of ‘0’ when
you want the system to pick a port. This is what you should do when writing
a TCP or UDP client. You may also use a well-known service name, such as
‘smtp’ or ‘http’, in which case gawk attempts to determine the predefined port
number using the C getaddrinfo() function.

remote-host
The IP address or fully-qualified domain name of the Internet host to which
you want to connect.

remote-port
The TCP or UDP port number to use on the given remote-host. Again, use ‘0’
if you don’t care, or else a well-known service name.

NOTE: Failure in opening a two-way socket will result in a non-fatal error
being returned to the calling code. The value of ERRNO indicates the error (see
Section 7.5.2 [Built-in Variables That Convey Information], page 131).

Consider the following very simple example:

BEGIN {

Service = "/inet/tcp/0/localhost/daytime"

Service |& getline

print $0

close(Service)

}

This program reads the current date and time from the local system’s TCP ‘daytime’
server. It then prints the results and closes the connection.

Because this topic is extensive, the use of gawk for TCP/IP programming is documented
separately. See TCP/IP Internetworking with gawk, which comes as part of the gawk

distribution, for a much more complete introduction and discussion, as well as extensive
examples.

Chapter 11: Advanced Features of gawk 209

11.5 Profiling Your awk Programs

You may produce execution traces of your awk programs. This is done with a specially
compiled version of gawk, called pgawk (“profiling gawk”).

pgawk is identical in every way to gawk, except that when it has finished running, it
creates a profile of your program in a file named awkprof.out. Because it is profiling, it
also executes up to 45% slower than gawk normally does.

As shown in the following example, the --profile option can be used to change the
name of the file where pgawk will write the profile:

pgawk --profile=myprog.prof -f myprog.awk data1 data2

In the above example, pgawk places the profile in myprog.prof instead of in awkprof.out.

Here is a sample session showing a simple awk program, its input data, and the results
from running pgawk. First, the awk program:

BEGIN { print "First BEGIN rule" }

END { print "First END rule" }

/foo/ {

print "matched /foo/, gosh"

for (i = 1; i <= 3; i++)

sing()

}

{

if (/foo/)

print "if is true"

else

print "else is true"

}

BEGIN { print "Second BEGIN rule" }

END { print "Second END rule" }

function sing(dummy)

{

print "I gotta be me!"

}

Following is the input data:

foo

bar

baz

foo

junk

Here is the awkprof.out that results from running pgawk on this program and data (this
example also illustrates that awk programmers sometimes have to work late):

210 GAWK: Effective AWK Programming

gawk profile, created Sun Aug 13 00:00:15 2000

BEGIN block(s)

BEGIN {

1 print "First BEGIN rule"

1 print "Second BEGIN rule"

}

Rule(s)

5 /foo/ { # 2

2 print "matched /foo/, gosh"

6 for (i = 1; i <= 3; i++) {

6 sing()

}

}

5 {

5 if (/foo/) { # 2

2 print "if is true"

3 } else {

3 print "else is true"

}

}

END block(s)

END {

1 print "First END rule"

1 print "Second END rule"

}

Functions, listed alphabetically

6 function sing(dummy)

{

6 print "I gotta be me!"

}

This example illustrates many of the basic features of profiling output. They are as
follows:

• The program is printed in the order BEGIN rule, BEGINFILE rule, pattern/action rules,
ENDFILE rule, END rule and functions, listed alphabetically. Multiple BEGIN and END

rules are merged together, as are multiple BEGINFILE and ENDFILE rules.

• Pattern-action rules have two counts. The first count, to the left of the rule, shows
how many times the rule’s pattern was tested. The second count, to the right of the

Chapter 11: Advanced Features of gawk 211

rule’s opening left brace in a comment, shows how many times the rule’s action was
executed. The difference between the two indicates how many times the rule’s pattern
evaluated to false.

• Similarly, the count for an if-else statement shows how many times the condition was
tested. To the right of the opening left brace for the if’s body is a count showing how
many times the condition was true. The count for the else indicates how many times
the test failed.

• The count for a loop header (such as for or while) shows how many times the loop test
was executed. (Because of this, you can’t just look at the count on the first statement
in a rule to determine how many times the rule was executed. If the first statement is
a loop, the count is misleading.)

• For user-defined functions, the count next to the function keyword indicates how
many times the function was called. The counts next to the statements in the body
show how many times those statements were executed.

• The layout uses “K&R” style with TABs. Braces are used everywhere, even when the
body of an if, else, or loop is only a single statement.

• Parentheses are used only where needed, as indicated by the structure of the program
and the precedence rules. For example, ‘(3 + 5) * 4’ means add three plus five, then
multiply the total by four. However, ‘3 + 5 * 4’ has no parentheses, and means ‘3 + (5

* 4)’.

• Parentheses are used around the arguments to print and printf only when the print
or printf statement is followed by a redirection. Similarly, if the target of a redirection
isn’t a scalar, it gets parenthesized.

• pgawk supplies leading comments in front of the BEGIN and END rules, the pattern/action
rules, and the functions.

The profiled version of your program may not look exactly like what you typed when
you wrote it. This is because pgawk creates the profiled version by “pretty printing” its
internal representation of the program. The advantage to this is that pgawk can produce a
standard representation. The disadvantage is that all source-code comments are lost, as are
the distinctions among multiple BEGIN, END, BEGINFILE, and ENDFILE rules. Also, things
such as:

/foo/

come out as:

/foo/ {

print $0

}

which is correct, but possibly surprising.

Besides creating profiles when a program has completed, pgawk can produce a profile
while it is running. This is useful if your awk program goes into an infinite loop and you
want to see what has been executed. To use this feature, run pgawk in the background:

$ pgawk -f myprog &

[1] 13992

The shell prints a job number and process ID number; in this case, 13992. Use the kill

command to send the USR1 signal to pgawk:

212 GAWK: Effective AWK Programming

$ kill -USR1 13992

As usual, the profiled version of the program is written to awkprof.out, or to a different
file if you use the --profile option.

Along with the regular profile, as shown earlier, the profile includes a trace of any active
functions:

Function Call Stack:

3. baz

2. bar

1. foo

-- main --

You may send pgawk the USR1 signal as many times as you like. Each time, the profile
and function call trace are appended to the output profile file.

If you use the HUP signal instead of the USR1 signal, pgawk produces the profile and the
function call trace and then exits.

When pgawk runs on MS-Windows systems, it uses the INT and QUIT signals for produc-
ing the profile and, in the case of the INT signal, pgawk exits. This is because these systems
don’t support the kill command, so the only signals you can deliver to a program are those
generated by the keyboard. The INT signal is generated by the Ctrl-C or Ctrl-BREAK key,
while the QUIT signal is generated by the Ctrl-\ key.

Finally, regular gawk also accepts the --profile option. When called this way, gawk
“pretty prints” the program into awkprof.out, without any execution counts.

Chapter 12: A Library of awk Functions 213

12 A Library of awk Functions

Section 9.2 [User-Defined Functions], page 175, describes how to write your own awk func-
tions. Writing functions is important, because it allows you to encapsulate algorithms and
program tasks in a single place. It simplifies programming, making program development
more manageable, and making programs more readable.

One valuable way to learn a new programming language is to read programs in that
language. To that end, this chapter and Chapter 13 [Practical awk Programs], page 243,
provide a good-sized body of code for you to read, and hopefully, to learn from.

This chapter presents a library of useful awk functions. Many of the sample programs
presented later in this book use these functions. The functions are presented here in a
progression from simple to complex.

Section 13.3.7 [Extracting Programs from Texinfo Source Files], page 273, presents a
program that you can use to extract the source code for these example library functions
and programs from the Texinfo source for this book. (This has already been done as part
of the gawk distribution.)

If you have written one or more useful, general-purpose awk functions and would like
to contribute them to the awk user community, see [How to Contribute], page 9, for more
information.

The programs in this chapter and in Chapter 13 [Practical awk Programs], page 243,
freely use features that are gawk-specific. Rewriting these programs for different implemen-
tations of awk is pretty straightforward.

• Diagnostic error messages are sent to /dev/stderr. Use ‘| "cat 1>&2"’ instead of ‘>
"/dev/stderr"’ if your system does not have a /dev/stderr, or if you cannot use
gawk.

• A number of programs use nextfile (see Section 7.4.9 [The nextfile Statement],
page 127) to skip any remaining input in the input file.

• Finally, some of the programs choose to ignore upper- and lowercase distinctions in
their input. They do so by assigning one to IGNORECASE. You can achieve almost the
same effect1 by adding the following rule to the beginning of the program:

ignore case

{ $0 = tolower($0) }

Also, verify that all regexp and string constants used in comparisons use only lowercase
letters.

12.1 Naming Library Function Global Variables

Due to the way the awk language evolved, variables are either global (usable by the en-
tire program) or local (usable just by a specific function). There is no intermediate state
analogous to static variables in C.

Library functions often need to have global variables that they can use to preserve state
information between calls to the function—for example, getopt()’s variable _opti (see

1 The effects are not identical. Output of the transformed record will be in all lowercase, while IGNORECASE
preserves the original contents of the input record.

214 GAWK: Effective AWK Programming

Section 12.4 [Processing Command-Line Options], page 227). Such variables are called
private, since the only functions that need to use them are the ones in the library.

When writing a library function, you should try to choose names for your private vari-
ables that will not conflict with any variables used by either another library function or a
user’s main program. For example, a name like i or j is not a good choice, because user
programs often use variable names like these for their own purposes.

The example programs shown in this chapter all start the names of their private variables
with an underscore (‘_’). Users generally don’t use leading underscores in their variable
names, so this convention immediately decreases the chances that the variable name will be
accidentally shared with the user’s program.

In addition, several of the library functions use a prefix that helps indicate what function
or set of functions use the variables—for example, _pw_byname in the user database routines
(see Section 12.5 [Reading the User Database], page 232). This convention is recommended,
since it even further decreases the chance of inadvertent conflict among variable names. Note
that this convention is used equally well for variable names and for private function names.2

As a final note on variable naming, if a function makes global variables available for use
by a main program, it is a good convention to start that variable’s name with a capital
letter—for example, getopt()’s Opterr and Optind variables (see Section 12.4 [Processing
Command-Line Options], page 227). The leading capital letter indicates that it is global,
while the fact that the variable name is not all capital letters indicates that the variable is
not one of awk’s built-in variables, such as FS.

It is also important that all variables in library functions that do not need to save state
are, in fact, declared local.3 If this is not done, the variable could accidentally be used in
the user’s program, leading to bugs that are very difficult to track down:

function lib_func(x, y, l1, l2)

{

...

use variable some_var # some_var should be local

... # but is not by oversight

}

A different convention, common in the Tcl community, is to use a single associative
array to hold the values needed by the library function(s), or “package.” This significantly
decreases the number of actual global names in use. For example, the functions described
in Section 12.5 [Reading the User Database], page 232, might have used array elements
PW_data["inited"], PW_data["total"], PW_data["count"], and PW_data["awklib"],
instead of _pw_inited, _pw_awklib, _pw_total, and _pw_count.

The conventions presented in this section are exactly that: conventions. You are not
required to write your programs this way—we merely recommend that you do so.

12.2 General Programming

This section presents a number of functions that are of general programming use.

2 While all the library routines could have been rewritten to use this convention, this was not done, in order
to show how our own awk programming style has evolved and to provide some basis for this discussion.

3 gawk’s --dump-variables command-line option is useful for verifying this.

Chapter 12: A Library of awk Functions 215

12.2.1 Converting Strings To Numbers

The strtonum() function (see Section 9.1.3 [String-Manipulation Functions], page 153) is
a gawk extension. The following function provides an implementation for other versions of
awk:

mystrtonum --- convert string to number

function mystrtonum(str, ret, chars, n, i, k, c)

{

if (str ~ /^0[0-7]*$/) {

octal

n = length(str)

ret = 0

for (i = 1; i <= n; i++) {

c = substr(str, i, 1)

if ((k = index("01234567", c)) > 0)

k-- # adjust for 1-basing in awk

ret = ret * 8 + k

}

} else if (str ~ /^0[xX][[:xdigit:]]+/) {

hexadecimal

str = substr(str, 3) # lop off leading 0x

n = length(str)

ret = 0

for (i = 1; i <= n; i++) {

c = substr(str, i, 1)

c = tolower(c)

if ((k = index("0123456789", c)) > 0)

k-- # adjust for 1-basing in awk

else if ((k = index("abcdef", c)) > 0)

k += 9

ret = ret * 16 + k

}

} else if (str ~ \

/^[-+]?([0-9]+([.][0-9]*([Ee][0-9]+)?)?|([.][0-9]+([Ee][-+]?[0-9]+)?))$/) {

decimal number, possibly floating point

ret = str + 0

} else

ret = "NOT-A-NUMBER"

return ret

}

BEGIN { # gawk test harness

a[1] = "25"

216 GAWK: Effective AWK Programming

a[2] = ".31"

a[3] = "0123"

a[4] = "0xdeadBEEF"

a[5] = "123.45"

a[6] = "1.e3"

a[7] = "1.32"

a[7] = "1.32E2"

#

for (i = 1; i in a; i++)

print a[i], strtonum(a[i]), mystrtonum(a[i])

}

The function first looks for C-style octal numbers (base 8). If the input string matches a
regular expression describing octal numbers, then mystrtonum() loops through each char-
acter in the string. It sets k to the index in "01234567" of the current octal digit. Since
the return value is one-based, the ‘k--’ adjusts k so it can be used in computing the return
value.

Similar logic applies to the code that checks for and converts a hexadecimal value, which
starts with ‘0x’ or ‘0X’. The use of tolower() simplifies the computation for finding the
correct numeric value for each hexadecimal digit.

Finally, if the string matches the (rather complicated) regexp for a regular decimal integer
or floating-point number, the computation ‘ret = str + 0’ lets awk convert the value to a
number.

A commented-out test program is included, so that the function can be tested with gawk

and the results compared to the built-in strtonum() function.

12.2.2 Assertions

When writing large programs, it is often useful to know that a condition or set of conditions
is true. Before proceeding with a particular computation, you make a statement about
what you believe to be the case. Such a statement is known as an assertion. The C
language provides an <assert.h> header file and corresponding assert() macro that the
programmer can use to make assertions. If an assertion fails, the assert() macro arranges
to print a diagnostic message describing the condition that should have been true but was
not, and then it kills the program. In C, using assert() looks this:

#include <assert.h>

int myfunc(int a, double b)

{

assert(a <= 5 && b >= 17.1);

...

}

If the assertion fails, the program prints a message similar to this:

prog.c:5: assertion failed: a <= 5 && b >= 17.1

The C language makes it possible to turn the condition into a string for use in printing
the diagnostic message. This is not possible in awk, so this assert() function also requires
a string version of the condition that is being tested. Following is the function:

Chapter 12: A Library of awk Functions 217

assert --- assert that a condition is true. Otherwise exit.

function assert(condition, string)

{

if (! condition) {

printf("%s:%d: assertion failed: %s\n",

FILENAME, FNR, string) > "/dev/stderr"

_assert_exit = 1

exit 1

}

}

END {

if (_assert_exit)

exit 1

}

The assert() function tests the condition parameter. If it is false, it prints a message
to standard error, using the string parameter to describe the failed condition. It then sets
the variable _assert_exit to one and executes the exit statement. The exit statement
jumps to the END rule. If the END rules finds _assert_exit to be true, it exits immediately.

The purpose of the test in the END rule is to keep any other END rules from running.
When an assertion fails, the program should exit immediately. If no assertions fail, then
_assert_exit is still false when the END rule is run normally, and the rest of the program’s
END rules execute. For all of this to work correctly, assert.awk must be the first source file
read by awk. The function can be used in a program in the following way:

function myfunc(a, b)

{

assert(a <= 5 && b >= 17.1, "a <= 5 && b >= 17.1")

...

}

If the assertion fails, you see a message similar to the following:

mydata:1357: assertion failed: a <= 5 && b >= 17.1

There is a small problem with this version of assert(). An END rule is automatically
added to the program calling assert(). Normally, if a program consists of just a BEGIN

rule, the input files and/or standard input are not read. However, now that the program has
an END rule, awk attempts to read the input data files or standard input (see Section 7.1.4.1
[Startup and Cleanup Actions], page 116), most likely causing the program to hang as it
waits for input.

There is a simple workaround to this: make sure that such a BEGIN rule always ends
with an exit statement.

12.2.3 Rounding Numbers

The way printf and sprintf() (see Section 5.5 [Using printf Statements for Fancier
Printing], page 78) perform rounding often depends upon the system’s C sprintf() sub-
routine. On many machines, sprintf() rounding is “unbiased,” which means it doesn’t

218 GAWK: Effective AWK Programming

always round a trailing ‘.5’ up, contrary to naive expectations. In unbiased rounding, ‘.5’
rounds to even, rather than always up, so 1.5 rounds to 2 but 4.5 rounds to 4. This means
that if you are using a format that does rounding (e.g., "%.0f"), you should check what
your system does. The following function does traditional rounding; it might be useful if
your awk’s printf does unbiased rounding:

round.awk --- do normal rounding

function round(x, ival, aval, fraction)

{

ival = int(x) # integer part, int() truncates

see if fractional part

if (ival == x) # no fraction

return ival # ensure no decimals

if (x < 0) {

aval = -x # absolute value

ival = int(aval)

fraction = aval - ival

if (fraction >= .5)

return int(x) - 1 # -2.5 --> -3

else

return int(x) # -2.3 --> -2

} else {

fraction = x - ival

if (fraction >= .5)

return ival + 1

else

return ival

}

}

test harness

{ print $0, round($0) }

12.2.4 The Cliff Random Number Generator

The Cliff random number generator is a very simple random number generator that “passes
the noise sphere test for randomness by showing no structure.” It is easily programmed, in
less than 10 lines of awk code:

cliff_rand.awk --- generate Cliff random numbers

BEGIN { _cliff_seed = 0.1 }

function cliff_rand()

{

_cliff_seed = (100 * log(_cliff_seed)) % 1

http://mathworld.wolfram.com/CliffRandomNumberGenerator.html

Chapter 12: A Library of awk Functions 219

if (_cliff_seed < 0)

_cliff_seed = - _cliff_seed

return _cliff_seed

}

This algorithm requires an initial “seed” of 0.1. Each new value uses the current seed
as input for the calculation. If the built-in rand() function (see Section 9.1.2 [Numeric
Functions], page 151) isn’t random enough, you might try using this function instead.

12.2.5 Translating Between Characters and Numbers

One commercial implementation of awk supplies a built-in function, ord(), which takes a
character and returns the numeric value for that character in the machine’s character set.
If the string passed to ord() has more than one character, only the first one is used.

The inverse of this function is chr() (from the function of the same name in Pascal),
which takes a number and returns the corresponding character. Both functions are written
very nicely in awk; there is no real reason to build them into the awk interpreter:

ord.awk --- do ord and chr

Global identifiers:

ord: numerical values indexed by characters

_ord_init: function to initialize _ord_

BEGIN { _ord_init() }

function _ord_init(low, high, i, t)

{

low = sprintf("%c", 7) # BEL is ascii 7

if (low == "\a") { # regular ascii

low = 0

high = 127

} else if (sprintf("%c", 128 + 7) == "\a") {

ascii, mark parity

low = 128

high = 255

} else { # ebcdic(!)

low = 0

high = 255

}

for (i = low; i <= high; i++) {

t = sprintf("%c", i)

ord[t] = i

}

}

220 GAWK: Effective AWK Programming

Some explanation of the numbers used by chr is worthwhile. The most prominent
character set in use today is ASCII.4 Although an 8-bit byte can hold 256 distinct values
(from 0 to 255), ASCII only defines characters that use the values from 0 to 127.5 In the now
distant past, at least one minicomputer manufacturer used ASCII, but with mark parity,
meaning that the leftmost bit in the byte is always 1. This means that on those systems,
characters have numeric values from 128 to 255. Finally, large mainframe systems use the
EBCDIC character set, which uses all 256 values. While there are other character sets in
use on some older systems, they are not really worth worrying about:

function ord(str, c)

{

only first character is of interest

c = substr(str, 1, 1)

return _ord_[c]

}

function chr(c)

{

force c to be numeric by adding 0

return sprintf("%c", c + 0)

}

test code

BEGIN \

{

for (;;) {

printf("enter a character: ")

if (getline var <= 0)

break

printf("ord(%s) = %d\n", var, ord(var))

}

}

An obvious improvement to these functions is to move the code for the _ord_init func-
tion into the body of the BEGIN rule. It was written this way initially for ease of development.
There is a “test program” in a BEGIN rule, to test the function. It is commented out for
production use.

12.2.6 Merging an Array into a String

When doing string processing, it is often useful to be able to join all the strings in an array
into one long string. The following function, join(), accomplishes this task. It is used later
in several of the application programs (see Chapter 13 [Practical awk Programs], page 243).

4 This is changing; many systems use Unicode, a very large character set that includes ASCII as a subset.
On systems with full Unicode support, a character can occupy up to 32 bits, making simple tests such
as used here prohibitively expensive.

5 ASCII has been extended in many countries to use the values from 128 to 255 for country-specific
characters. If your system uses these extensions, you can simplify _ord_init to loop from 0 to 255.

Chapter 12: A Library of awk Functions 221

Good function design is important; this function needs to be general but it should also
have a reasonable default behavior. It is called with an array as well as the beginning and
ending indices of the elements in the array to be merged. This assumes that the array indices
are numeric—a reasonable assumption since the array was likely created with split() (see
Section 9.1.3 [String-Manipulation Functions], page 153):

join.awk --- join an array into a string

function join(array, start, end, sep, result, i)

{

if (sep == "")

sep = " "

else if (sep == SUBSEP) # magic value

sep = ""

result = array[start]

for (i = start + 1; i <= end; i++)

result = result sep array[i]

return result

}

An optional additional argument is the separator to use when joining the strings back
together. If the caller supplies a nonempty value, join() uses it; if it is not supplied, it has
a null value. In this case, join() uses a single space as a default separator for the strings.
If the value is equal to SUBSEP, then join() joins the strings with no separator between
them. SUBSEP serves as a “magic” value to indicate that there should be no separation
between the component strings.6

12.2.7 Managing the Time of Day

The systime() and strftime() functions described in Section 9.1.5 [Time Functions],
page 168, provide the minimum functionality necessary for dealing with the time of day in
human readable form. While strftime() is extensive, the control formats are not neces-
sarily easy to remember or intuitively obvious when reading a program.

The following function, gettimeofday(), populates a user-supplied array with prefor-
matted time information. It returns a string with the current time formatted in the same
way as the date utility:

gettimeofday.awk --- get the time of day in a usable format

Returns a string in the format of output of date(1)

Populates the array argument time with individual values:

time["second"] -- seconds (0 - 59)

time["minute"] -- minutes (0 - 59)

time["hour"] -- hours (0 - 23)

time["althour"] -- hours (0 - 12)

time["monthday"] -- day of month (1 - 31)

time["month"] -- month of year (1 - 12)

6 It would be nice if awk had an assignment operator for concatenation. The lack of an explicit operator
for concatenation makes string operations more difficult than they really need to be.

222 GAWK: Effective AWK Programming

time["monthname"] -- name of the month

time["shortmonth"] -- short name of the month

time["year"] -- year modulo 100 (0 - 99)

time["fullyear"] -- full year

time["weekday"] -- day of week (Sunday = 0)

time["altweekday"] -- day of week (Monday = 0)

time["dayname"] -- name of weekday

time["shortdayname"] -- short name of weekday

time["yearday"] -- day of year (0 - 365)

time["timezone"] -- abbreviation of timezone name

time["ampm"] -- AM or PM designation

time["weeknum"] -- week number, Sunday first day

time["altweeknum"] -- week number, Monday first day

function gettimeofday(time, ret, now, i)

{

get time once, avoids unnecessary system calls

now = systime()

return date(1)-style output

ret = strftime("%a %b %e %H:%M:%S %Z %Y", now)

clear out target array

delete time

fill in values, force numeric values to be

numeric by adding 0

time["second"] = strftime("%S", now) + 0

time["minute"] = strftime("%M", now) + 0

time["hour"] = strftime("%H", now) + 0

time["althour"] = strftime("%I", now) + 0

time["monthday"] = strftime("%d", now) + 0

time["month"] = strftime("%m", now) + 0

time["monthname"] = strftime("%B", now)

time["shortmonth"] = strftime("%b", now)

time["year"] = strftime("%y", now) + 0

time["fullyear"] = strftime("%Y", now) + 0

time["weekday"] = strftime("%w", now) + 0

time["altweekday"] = strftime("%u", now) + 0

time["dayname"] = strftime("%A", now)

time["shortdayname"] = strftime("%a", now)

time["yearday"] = strftime("%j", now) + 0

time["timezone"] = strftime("%Z", now)

time["ampm"] = strftime("%p", now)

time["weeknum"] = strftime("%U", now) + 0

time["altweeknum"] = strftime("%W", now) + 0

Chapter 12: A Library of awk Functions 223

return ret

}

The string indices are easier to use and read than the various formats required by
strftime(). The alarm program presented in Section 13.3.2 [An Alarm Clock Program],
page 264, uses this function. A more general design for the gettimeofday() function would
have allowed the user to supply an optional timestamp value to use instead of the current
time.

12.3 Data File Management

This section presents functions that are useful for managing command-line data files.

12.3.1 Noting Data File Boundaries

The BEGIN and END rules are each executed exactly once at the beginning and end of
your awk program, respectively (see Section 7.1.4 [The BEGIN and END Special Patterns],
page 116). We (the gawk authors) once had a user who mistakenly thought that the BEGIN
rule is executed at the beginning of each data file and the END rule is executed at the end
of each data file.

When informed that this was not the case, the user requested that we add new special
patterns to gawk, named BEGIN_FILE and END_FILE, that would have the desired behavior.
He even supplied us the code to do so.

Adding these special patterns to gawk wasn’t necessary; the job can be done cleanly
in awk itself, as illustrated by the following library program. It arranges to call two user-
supplied functions, beginfile() and endfile(), at the beginning and end of each data
file. Besides solving the problem in only nine(!) lines of code, it does so portably ; this works
with any implementation of awk:

transfile.awk

#

Give the user a hook for filename transitions

#

The user must supply functions beginfile() and endfile()

that each take the name of the file being started or

finished, respectively.

FILENAME != _oldfilename \

{

if (_oldfilename != "")

endfile(_oldfilename)

_oldfilename = FILENAME

beginfile(FILENAME)

}

END { endfile(FILENAME) }

This file must be loaded before the user’s “main” program, so that the rule it supplies
is executed first.

224 GAWK: Effective AWK Programming

This rule relies on awk’s FILENAME variable that automatically changes for each new
data file. The current file name is saved in a private variable, _oldfilename. If FILENAME
does not equal _oldfilename, then a new data file is being processed and it is necessary to
call endfile() for the old file. Because endfile() should only be called if a file has been
processed, the program first checks to make sure that _oldfilename is not the null string.
The program then assigns the current file name to _oldfilename and calls beginfile()
for the file. Because, like all awk variables, _oldfilename is initialized to the null string,
this rule executes correctly even for the first data file.

The program also supplies an END rule to do the final processing for the last file. Because
this END rule comes before any END rules supplied in the “main” program, endfile() is called
first. Once again the value of multiple BEGIN and END rules should be clear.

If the same data file occurs twice in a row on the command line, then endfile() and
beginfile() are not executed at the end of the first pass and at the beginning of the second
pass. The following version solves the problem:

ftrans.awk --- handle data file transitions

#

user supplies beginfile() and endfile() functions

FNR == 1 {

if (_filename_ != "")

endfile(_filename_)

filename = FILENAME

beginfile(FILENAME)

}

END { endfile(_filename_) }

Section 13.2.7 [Counting Things], page 261, shows how this library function can be used
and how it simplifies writing the main program.

Advanced Notes: So Why Does gawk have BEGINFILE and ENDFILE?

You are probably wondering, if beginfile() and endfile() functions can do the job, why
does gawk have BEGINFILE and ENDFILE patterns (see Section 7.1.5 [The BEGINFILE and
ENDFILE Special Patterns], page 117)?

Good question. Normally, if awk cannot open a file, this causes an immediate fatal error.
In this case, there is no way for a user-defined function to deal with the problem, since
the mechanism for calling it relies on the file being open and at the first record. Thus, the
main reason for BEGINFILE is to give you a “hook” to catch files that cannot be processed.
ENDFILE exists for symmetry, and because it provides an easy way to do per-file cleanup
processing.

12.3.2 Rereading the Current File

Another request for a new built-in function was for a rewind() function that would make it
possible to reread the current file. The requesting user didn’t want to have to use getline
(see Section 4.9 [Explicit Input with getline], page 67) inside a loop.

Chapter 12: A Library of awk Functions 225

However, as long as you are not in the END rule, it is quite easy to arrange to immediately
close the current input file and then start over with it from the top. For lack of a better
name, we’ll call it rewind():

rewind.awk --- rewind the current file and start over

function rewind(i)

{

shift remaining arguments up

for (i = ARGC; i > ARGIND; i--)

ARGV[i] = ARGV[i-1]

make sure gawk knows to keep going

ARGC++

make current file next to get done

ARGV[ARGIND+1] = FILENAME

do it

nextfile

}

This code relies on the ARGIND variable (see Section 7.5.2 [Built-in Variables That Convey
Information], page 131), which is specific to gawk. If you are not using gawk, you can use
ideas presented in the previous section to either update ARGIND on your own or modify this
code as appropriate.

The rewind() function also relies on the nextfile keyword (see Section 7.4.9 [The
nextfile Statement], page 127).

12.3.3 Checking for Readable Data Files

Normally, if you give awk a data file that isn’t readable, it stops with a fatal error. There
are times when you might want to just ignore such files and keep going. You can do this
by prepending the following program to your awk program:

readable.awk --- library file to skip over unreadable files

BEGIN {

for (i = 1; i < ARGC; i++) {

if (ARGV[i] ~ /^[[:alpha:]_][[:alnum:]_]*=.*/ \

|| ARGV[i] == "-" || ARGV[i] == "/dev/stdin")

continue # assignment or standard input

else if ((getline junk < ARGV[i]) < 0) # unreadable

delete ARGV[i]

else

close(ARGV[i])

}

}

226 GAWK: Effective AWK Programming

This works, because the getline won’t be fatal. Removing the element from ARGV with
delete skips the file (since it’s no longer in the list). See also Section 7.5.3 [Using ARGC

and ARGV], page 135.

12.3.4 Checking For Zero-length Files

All known awk implementations silently skip over zero-length files. This is a by-product
of awk’s implicit read-a-record-and-match-against-the-rules loop: when awk tries to read a
record from an empty file, it immediately receives an end of file indication, closes the file,
and proceeds on to the next command-line data file, without executing any user-level awk
program code.

Using gawk’s ARGIND variable (see Section 7.5 [Built-in Variables], page 128), it is possible
to detect when an empty data file has been skipped. Similar to the library file presented
in Section 12.3.1 [Noting Data File Boundaries], page 223, the following library file calls a
function named zerofile() that the user must provide. The arguments passed are the file
name and the position in ARGV where it was found:

zerofile.awk --- library file to process empty input files

BEGIN { Argind = 0 }

ARGIND > Argind + 1 {

for (Argind++; Argind < ARGIND; Argind++)

zerofile(ARGV[Argind], Argind)

}

ARGIND != Argind { Argind = ARGIND }

END {

if (ARGIND > Argind)

for (Argind++; Argind <= ARGIND; Argind++)

zerofile(ARGV[Argind], Argind)

}

The user-level variable Argind allows the awk program to track its progress through
ARGV. Whenever the program detects that ARGIND is greater than ‘Argind + 1’, it means
that one or more empty files were skipped. The action then calls zerofile() for each such
file, incrementing Argind along the way.

The ‘Argind != ARGIND’ rule simply keeps Argind up to date in the normal case.

Finally, the END rule catches the case of any empty files at the end of the command-line
arguments. Note that the test in the condition of the for loop uses the ‘<=’ operator, not
‘<’.

As an exercise, you might consider whether this same problem can be solved without
relying on gawk’s ARGIND variable.

As a second exercise, revise this code to handle the case where an intervening value in
ARGV is a variable assignment.

Chapter 12: A Library of awk Functions 227

12.3.5 Treating Assignments as File Names

Occasionally, you might not want awk to process command-line variable assignments (see
Section 6.1.3.2 [Assigning Variables on the Command Line], page 94). In particular, if you
have a file name that contain an ‘=’ character, awk treats the file name as an assignment,
and does not process it.

Some users have suggested an additional command-line option for gawk to disable
command-line assignments. However, some simple programming with a library file does
the trick:

noassign.awk --- library file to avoid the need for a

special option that disables command-line assignments

function disable_assigns(argc, argv, i)

{

for (i = 1; i < argc; i++)

if (argv[i] ~ /^[[:alpha:]_][[:alnum:]_]*=.*/)

argv[i] = ("./" argv[i])

}

BEGIN {

if (No_command_assign)

disable_assigns(ARGC, ARGV)

}

You then run your program this way:

awk -v No_command_assign=1 -f noassign.awk -f yourprog.awk *

The function works by looping through the arguments. It prepends ‘./’ to any argument
that matches the form of a variable assignment, turning that argument into a file name.

The use of No_command_assign allows you to disable command-line assignments at in-
vocation time, by giving the variable a true value. When not set, it is initially zero (i.e.,
false), so the command-line arguments are left alone.

12.4 Processing Command-Line Options

Most utilities on POSIX compatible systems take options on the command line that can
be used to change the way a program behaves. awk is an example of such a program (see
Section 2.2 [Command-Line Options], page 25). Often, options take arguments; i.e., data
that the program needs to correctly obey the command-line option. For example, awk’s -F
option requires a string to use as the field separator. The first occurrence on the command
line of either -- or a string that does not begin with ‘-’ ends the options.

Modern Unix systems provide a C function named getopt() for processing command-
line arguments. The programmer provides a string describing the one-letter options. If
an option requires an argument, it is followed in the string with a colon. getopt() is
also passed the count and values of the command-line arguments and is called in a loop.
getopt() processes the command-line arguments for option letters. Each time around the
loop, it returns a single character representing the next option letter that it finds, or ‘?’ if
it finds an invalid option. When it returns −1, there are no options left on the command
line.

228 GAWK: Effective AWK Programming

When using getopt(), options that do not take arguments can be grouped together.
Furthermore, options that take arguments require that the argument be present. The
argument can immediately follow the option letter, or it can be a separate command-line
argument.

Given a hypothetical program that takes three command-line options, -a, -b, and -c,
where -b requires an argument, all of the following are valid ways of invoking the program:

prog -a -b foo -c data1 data2 data3

prog -ac -bfoo -- data1 data2 data3

prog -acbfoo data1 data2 data3

Notice that when the argument is grouped with its option, the rest of the argument is
considered to be the option’s argument. In this example, -acbfoo indicates that all of the
-a, -b, and -c options were supplied, and that ‘foo’ is the argument to the -b option.

getopt() provides four external variables that the programmer can use:

optind The index in the argument value array (argv) where the first nonoption
command-line argument can be found.

optarg The string value of the argument to an option.

opterr Usually getopt() prints an error message when it finds an invalid option. Set-
ting opterr to zero disables this feature. (An application might want to print
its own error message.)

optopt The letter representing the command-line option.

The following C fragment shows how getopt() might process command-line arguments
for awk:

int

main(int argc, char *argv[])

{

...

/* print our own message */

opterr = 0;

while ((c = getopt(argc, argv, "v:f:F:W:")) != -1) {

switch (c) {

case ’f’: /* file */

...

break;

case ’F’: /* field separator */

...

break;

case ’v’: /* variable assignment */

...

break;

case ’W’: /* extension */

...

break;

case ’?’:

Chapter 12: A Library of awk Functions 229

default:

usage();

break;

}

}

...

}

As a side point, gawk actually uses the GNU getopt_long() function to process both
normal and GNU-style long options (see Section 2.2 [Command-Line Options], page 25).

The abstraction provided by getopt() is very useful and is quite handy in awk programs
as well. Following is an awk version of getopt(). This function highlights one of the greatest
weaknesses in awk, which is that it is very poor at manipulating single characters. Repeated
calls to substr() are necessary for accessing individual characters (see Section 9.1.3 [String-
Manipulation Functions], page 153).7

The discussion that follows walks through the code a bit at a time:

getopt.awk --- Do C library getopt(3) function in awk

External variables:

Optind -- index in ARGV of first nonoption argument

Optarg -- string value of argument to current option

Opterr -- if nonzero, print our own diagnostic

Optopt -- current option letter

Returns:

-1 at end of options

"?" for unrecognized option

<c> a character representing the current option

Private Data:

_opti -- index in multi-flag option, e.g., -abc

The function starts out with comments presenting a list of the global variables it uses,
what the return values are, what they mean, and any global variables that are “private” to
this library function. Such documentation is essential for any program, and particularly for
library functions.

The getopt() function first checks that it was indeed called with a string of options (the
options parameter). If options has a zero length, getopt() immediately returns −1:

function getopt(argc, argv, options, thisopt, i)

{

if (length(options) == 0) # no options given

return -1

7 This function was written before gawk acquired the ability to split strings into single characters using ""

as the separator. We have left it alone, since using substr() is more portable.

230 GAWK: Effective AWK Programming

if (argv[Optind] == "--") { # all done

Optind++

_opti = 0

return -1

} else if (argv[Optind] !~ /^-[^:[:space:]]/) {

_opti = 0

return -1

}

The next thing to check for is the end of the options. A -- ends the command-line
options, as does any command-line argument that does not begin with a ‘-’. Optind is used
to step through the array of command-line arguments; it retains its value across calls to
getopt(), because it is a global variable.

The regular expression that is used, /^-[^:[:space:]/, checks for a ‘-’ followed by
anything that is not whitespace and not a colon. If the current command-line argument
does not match this pattern, it is not an option, and it ends option processing. Continuing
on:

if (_opti == 0)

_opti = 2

thisopt = substr(argv[Optind], _opti, 1)

Optopt = thisopt

i = index(options, thisopt)

if (i == 0) {

if (Opterr)

printf("%c -- invalid option\n",

thisopt) > "/dev/stderr"

if (_opti >= length(argv[Optind])) {

Optind++

_opti = 0

} else

_opti++

return "?"

}

The _opti variable tracks the position in the current command-line argument
(argv[Optind]). If multiple options are grouped together with one ‘-’ (e.g., -abx), it is
necessary to return them to the user one at a time.

If _opti is equal to zero, it is set to two, which is the index in the string of the next
character to look at (we skip the ‘-’, which is at position one). The variable thisopt holds
the character, obtained with substr(). It is saved in Optopt for the main program to use.

If thisopt is not in the options string, then it is an invalid option. If Opterr is nonzero,
getopt() prints an error message on the standard error that is similar to the message from
the C version of getopt().

Because the option is invalid, it is necessary to skip it and move on to the next option
character. If _opti is greater than or equal to the length of the current command-line
argument, it is necessary to move on to the next argument, so Optind is incremented and
_opti is reset to zero. Otherwise, Optind is left alone and _opti is merely incremented.

Chapter 12: A Library of awk Functions 231

In any case, because the option is invalid, getopt() returns "?". The main program can
examine Optopt if it needs to know what the invalid option letter actually is. Continuing
on:

if (substr(options, i + 1, 1) == ":") {

get option argument

if (length(substr(argv[Optind], _opti + 1)) > 0)

Optarg = substr(argv[Optind], _opti + 1)

else

Optarg = argv[++Optind]

_opti = 0

} else

Optarg = ""

If the option requires an argument, the option letter is followed by a colon in the
options string. If there are remaining characters in the current command-line argument
(argv[Optind]), then the rest of that string is assigned to Optarg. Otherwise, the next
command-line argument is used (‘-xFOO’ versus ‘-x FOO’). In either case, _opti is reset
to zero, because there are no more characters left to examine in the current command-line
argument. Continuing:

if (_opti == 0 || _opti >= length(argv[Optind])) {

Optind++

_opti = 0

} else

_opti++

return thisopt

}

Finally, if _opti is either zero or greater than the length of the current command-
line argument, it means this element in argv is through being processed, so Optind is
incremented to point to the next element in argv. If neither condition is true, then only
_opti is incremented, so that the next option letter can be processed on the next call to
getopt().

The BEGIN rule initializes both Opterr and Optind to one. Opterr is set to one, since
the default behavior is for getopt() to print a diagnostic message upon seeing an invalid
option. Optind is set to one, since there’s no reason to look at the program name, which is
in ARGV[0]:

BEGIN {

Opterr = 1 # default is to diagnose

Optind = 1 # skip ARGV[0]

test program

if (_getopt_test) {

while ((_go_c = getopt(ARGC, ARGV, "ab:cd")) != -1)

printf("c = <%c>, optarg = <%s>\n",

_go_c, Optarg)

printf("non-option arguments:\n")

for (; Optind < ARGC; Optind++)

232 GAWK: Effective AWK Programming

printf("\tARGV[%d] = <%s>\n",

Optind, ARGV[Optind])

}

}

The rest of the BEGIN rule is a simple test program. Here is the result of two sample
runs of the test program:

$ awk -f getopt.awk -v _getopt_test=1 -- -a -cbARG bax -x

a c = <a>, optarg = <>

a c = <c>, optarg = <>

a c = , optarg = <ARG>

a non-option arguments:

a ARGV[3] = <bax>

a ARGV[4] = <-x>

$ awk -f getopt.awk -v _getopt_test=1 -- -a -x -- xyz abc

a c = <a>, optarg = <>

error x -- invalid option

a c = <?>, optarg = <>

a non-option arguments:

a ARGV[4] = <xyz>

a ARGV[5] = <abc>

In both runs, the first -- terminates the arguments to awk, so that it does not try to
interpret the -a, etc., as its own options.

NOTE: After getopt() is through, it is the responsibility of the user level code
to clear out all the elements of ARGV from 1 to Optind, so that awk does not try
to process the command-line options as file names.

Several of the sample programs presented in Chapter 13 [Practical awk Programs],
page 243, use getopt() to process their arguments.

12.5 Reading the User Database

The PROCINFO array (see Section 7.5 [Built-in Variables], page 128) provides access to the
current user’s real and effective user and group ID numbers, and if available, the user’s
supplementary group set. However, because these are numbers, they do not provide very
useful information to the average user. There needs to be some way to find the user
information associated with the user and group ID numbers. This section presents a suite
of functions for retrieving information from the user database. See Section 12.6 [Reading
the Group Database], page 236, for a similar suite that retrieves information from the group
database.

The POSIX standard does not define the file where user information is kept. Instead, it
provides the <pwd.h> header file and several C language subroutines for obtaining user in-
formation. The primary function is getpwent(), for “get password entry.” The “password”
comes from the original user database file, /etc/passwd, which stores user information,
along with the encrypted passwords (hence the name).

Chapter 12: A Library of awk Functions 233

While an awk program could simply read /etc/passwd directly, this file may not contain
complete information about the system’s set of users.8 To be sure you are able to produce
a readable and complete version of the user database, it is necessary to write a small C
program that calls getpwent(). getpwent() is defined as returning a pointer to a struct

passwd. Each time it is called, it returns the next entry in the database. When there are no
more entries, it returns NULL, the null pointer. When this happens, the C program should
call endpwent() to close the database. Following is pwcat, a C program that “cats” the
password database:

/*

* pwcat.c

*

* Generate a printable version of the password database

*/

#include <stdio.h>

#include <pwd.h>

int

main(int argc, char **argv)

{

struct passwd *p;

while ((p = getpwent()) != NULL)

printf("%s:%s:%ld:%ld:%s:%s:%s\n",

p->pw_name, p->pw_passwd, (long) p->pw_uid,

(long) p->pw_gid, p->pw_gecos, p->pw_dir, p->pw_shell);

endpwent();

return 0;

}

If you don’t understand C, don’t worry about it. The output from pwcat is the user
database, in the traditional /etc/passwd format of colon-separated fields. The fields are:

Login name
The user’s login name.

Encrypted password
The user’s encrypted password. This may not be available on some systems.

User-ID The user’s numeric user ID number. (On some systems it’s a C long, and not
an int. Thus we cast it to long for all cases.)

Group-ID The user’s numeric group ID number. (Similar comments about long vs. int
apply here.)

Full name The user’s full name, and perhaps other information associated with the user.

Home directory
The user’s login (or “home”) directory (familiar to shell programmers as $HOME).

8 It is often the case that password information is stored in a network database.

234 GAWK: Effective AWK Programming

Login shell
The program that is run when the user logs in. This is usually a shell, such as
Bash.

A few lines representative of pwcat’s output are as follows:

$ pwcat

a root:3Ov02d5VaUPB6:0:1:Operator:/:/bin/sh

a nobody:*:65534:65534::/:

a daemon:*:1:1::/:

a sys:*:2:2::/:/bin/csh

a bin:*:3:3::/bin:

a arnold:xyzzy:2076:10:Arnold Robbins:/home/arnold:/bin/sh

a miriam:yxaay:112:10:Miriam Robbins:/home/miriam:/bin/sh

a andy:abcca2:113:10:Andy Jacobs:/home/andy:/bin/sh

...

With that introduction, following is a group of functions for getting user information.
There are several functions here, corresponding to the C functions of the same names:

passwd.awk --- access password file information

BEGIN {

tailor this to suit your system

_pw_awklib = "/usr/local/libexec/awk/"

}

function _pw_init(oldfs, oldrs, olddol0, pwcat, using_fw, using_fpat)

{

if (_pw_inited)

return

oldfs = FS

oldrs = RS

olddol0 = $0

using_fw = (PROCINFO["FS"] == "FIELDWIDTHS")

using_fpat = (PROCINFO["FS"] == "FPAT")

FS = ":"

RS = "\n"

pwcat = _pw_awklib "pwcat"

while ((pwcat | getline) > 0) {

_pw_byname[$1] = $0

_pw_byuid[$3] = $0

_pw_bycount[++_pw_total] = $0

}

close(pwcat)

_pw_count = 0

_pw_inited = 1

FS = oldfs

Chapter 12: A Library of awk Functions 235

if (using_fw)

FIELDWIDTHS = FIELDWIDTHS

else if (using_fpat)

FPAT = FPAT

RS = oldrs

$0 = olddol0

}

The BEGIN rule sets a private variable to the directory where pwcat is stored.
Because it is used to help out an awk library routine, we have chosen to put it in
/usr/local/libexec/awk; however, you might want it to be in a different directory on
your system.

The function _pw_init() keeps three copies of the user information in three associative
arrays. The arrays are indexed by username (_pw_byname), by user ID number (_pw_byuid),
and by order of occurrence (_pw_bycount). The variable _pw_inited is used for efficiency,
since _pw_init() needs to be called only once.

Because this function uses getline to read information from pwcat, it first saves the
values of FS, RS, and $0. It notes in the variable using_fw whether field splitting with
FIELDWIDTHS is in effect or not. Doing so is necessary, since these functions could be called
from anywhere within a user’s program, and the user may have his or her own way of
splitting records and fields.

The using_fw variable checks PROCINFO["FS"], which is "FIELDWIDTHS" if field splitting
is being done with FIELDWIDTHS. This makes it possible to restore the correct field-splitting
mechanism later. The test can only be true for gawk. It is false if using FS or FPAT, or on
some other awk implementation.

The code that checks for using FPAT, using using_fpat and PROCINFO["FS"] is similar.

The main part of the function uses a loop to read database lines, split the line into
fields, and then store the line into each array as necessary. When the loop is done,
_pw_init() cleans up by closing the pipeline, setting _pw_inited to one, and restoring
FS (and FIELDWIDTHS or FPAT if necessary), RS, and $0. The use of _pw_count is explained
shortly.

The getpwnam() function takes a username as a string argument. If that user is in the
database, it returns the appropriate line. Otherwise, it relies on the array reference to a
nonexistent element to create the element with the null string as its value:

function getpwnam(name)

{

_pw_init()

return _pw_byname[name]

}

Similarly, the getpwuid function takes a user ID number argument. If that user number
is in the database, it returns the appropriate line. Otherwise, it returns the null string:

function getpwuid(uid)

{

_pw_init()

return _pw_byuid[uid]

}

236 GAWK: Effective AWK Programming

The getpwent() function simply steps through the database, one entry at a time. It
uses _pw_count to track its current position in the _pw_bycount array:

function getpwent()

{

_pw_init()

if (_pw_count < _pw_total)

return _pw_bycount[++_pw_count]

return ""

}

The endpwent() function resets _pw_count to zero, so that subsequent calls to
getpwent() start over again:

function endpwent()

{

_pw_count = 0

}

A conscious design decision in this suite is that each subroutine calls _pw_init() to
initialize the database arrays. The overhead of running a separate process to generate the
user database, and the I/O to scan it, are only incurred if the user’s main program actually
calls one of these functions. If this library file is loaded along with a user’s program, but none
of the routines are ever called, then there is no extra runtime overhead. (The alternative is
move the body of _pw_init() into a BEGIN rule, which always runs pwcat. This simplifies
the code but runs an extra process that may never be needed.)

In turn, calling _pw_init() is not too expensive, because the _pw_inited variable keeps
the program from reading the data more than once. If you are worried about squeezing
every last cycle out of your awk program, the check of _pw_inited could be moved out of
_pw_init() and duplicated in all the other functions. In practice, this is not necessary,
since most awk programs are I/O-bound, and such a change would clutter up the code.

The id program in Section 13.2.3 [Printing out User Information], page 252, uses these
functions.

12.6 Reading the Group Database

Much of the discussion presented in Section 12.5 [Reading the User Database], page 232,
applies to the group database as well. Although there has traditionally been a well-known
file (/etc/group) in a well-known format, the POSIX standard only provides a set of C
library routines (<grp.h> and getgrent()) for accessing the information. Even though this
file may exist, it may not have complete information. Therefore, as with the user database,
it is necessary to have a small C program that generates the group database as its output.
grcat, a C program that “cats” the group database, is as follows:

/*

* grcat.c

*

* Generate a printable version of the group database

*/

#include <stdio.h>

#include <grp.h>

Chapter 12: A Library of awk Functions 237

int

main(int argc, char **argv)

{

struct group *g;

int i;

while ((g = getgrent()) != NULL) {

printf("%s:%s:%ld:", g->gr_name, g->gr_passwd,

(long) g->gr_gid);

for (i = 0; g->gr_mem[i] != NULL; i++) {

printf("%s", g->gr_mem[i]);

if (g->gr_mem[i+1] != NULL)

putchar(’,’);

}

putchar(’\n’);

}

endgrent();

return 0;

}

Each line in the group database represents one group. The fields are separated with
colons and represent the following information:

Group Name
The group’s name.

Group Password
The group’s encrypted password. In practice, this field is never used; it is
usually empty or set to ‘*’.

Group ID Number
The group’s numeric group ID number; this number must be unique within the
file. (On some systems it’s a C long, and not an int. Thus we cast it to long

for all cases.)

Group Member List
A comma-separated list of user names. These users are members of the group.
Modern Unix systems allow users to be members of several groups simultane-
ously. If your system does, then there are elements "group1" through "groupN"

in PROCINFO for those group ID numbers. (Note that PROCINFO is a gawk ex-
tension; see Section 7.5 [Built-in Variables], page 128.)

Here is what running grcat might produce:

$ grcat

a wheel:*:0:arnold

a nogroup:*:65534:

a daemon:*:1:

a kmem:*:2:

a staff:*:10:arnold,miriam,andy

238 GAWK: Effective AWK Programming

a other:*:20:

...

Here are the functions for obtaining information from the group database. There are
several, modeled after the C library functions of the same names:

group.awk --- functions for dealing with the group file

BEGIN \

{

Change to suit your system

_gr_awklib = "/usr/local/libexec/awk/"

}

function _gr_init(oldfs, oldrs, olddol0, grcat,

using_fw, using_fpat, n, a, i)

{

if (_gr_inited)

return

oldfs = FS

oldrs = RS

olddol0 = $0

using_fw = (PROCINFO["FS"] == "FIELDWIDTHS")

using_fpat = (PROCINFO["FS"] == "FPAT")

FS = ":"

RS = "\n"

grcat = _gr_awklib "grcat"

while ((grcat | getline) > 0) {

if ($1 in _gr_byname)

_gr_byname[$1] = _gr_byname[$1] "," $4

else

_gr_byname[$1] = $0

if ($3 in _gr_bygid)

_gr_bygid[$3] = _gr_bygid[$3] "," $4

else

_gr_bygid[$3] = $0

n = split($4, a, "[\t]*,[\t]*")

for (i = 1; i <= n; i++)

if (a[i] in _gr_groupsbyuser)

_gr_groupsbyuser[a[i]] = \

_gr_groupsbyuser[a[i]] " " $1

else

_gr_groupsbyuser[a[i]] = $1

_gr_bycount[++_gr_count] = $0

Chapter 12: A Library of awk Functions 239

}

close(grcat)

_gr_count = 0

_gr_inited++

FS = oldfs

if (using_fw)

FIELDWIDTHS = FIELDWIDTHS

else if (using_fpat)

FPAT = FPAT

RS = oldrs

$0 = olddol0

}

The BEGIN rule sets a private variable to the directory where grcat is stored.
Because it is used to help out an awk library routine, we have chosen to put it in
/usr/local/libexec/awk. You might want it to be in a different directory on your
system.

These routines follow the same general outline as the user database routines (see
Section 12.5 [Reading the User Database], page 232). The _gr_inited variable is used to
ensure that the database is scanned no more than once. The _gr_init() function first
saves FS, RS, and $0, and then sets FS and RS to the correct values for scanning the group
information. It also takes care to note whether FIELDWIDTHS or FPAT is being used, and to
restore the appropriate field splitting mechanism.

The group information is stored is several associative arrays. The arrays are indexed
by group name (_gr_byname), by group ID number (_gr_bygid), and by position
in the database (_gr_bycount). There is an additional array indexed by user name
(_gr_groupsbyuser), which is a space-separated list of groups to which each user belongs.

Unlike the user database, it is possible to have multiple records in the database for the
same group. This is common when a group has a large number of members. A pair of such
entries might look like the following:

tvpeople:*:101:johnny,jay,arsenio

tvpeople:*:101:david,conan,tom,joan

For this reason, _gr_init() looks to see if a group name or group ID number is already
seen. If it is, then the user names are simply concatenated onto the previous list of users.
(There is actually a subtle problem with the code just presented. Suppose that the first
time there were no names. This code adds the names with a leading comma. It also doesn’t
check that there is a $4.)

Finally, _gr_init() closes the pipeline to grcat, restores FS (and FIELDWIDTHS or FPAT
if necessary), RS, and $0, initializes _gr_count to zero (it is used later), and makes _gr_
inited nonzero.

The getgrnam() function takes a group name as its argument, and if that group exists,
it is returned. Otherwise, it relies on the array reference to a nonexistent element to create
the element with the null string as its value:

function getgrnam(group)

{

_gr_init()

240 GAWK: Effective AWK Programming

return _gr_byname[group]

}

The getgrgid() function is similar; it takes a numeric group ID and looks up the
information associated with that group ID:

function getgrgid(gid)

{

_gr_init()

return _gr_bygid[gid]

}

The getgruser() function does not have a C counterpart. It takes a user name and
returns the list of groups that have the user as a member:

function getgruser(user)

{

_gr_init()

return _gr_groupsbyuser[user]

}

The getgrent() function steps through the database one entry at a time. It uses _gr_
count to track its position in the list:

function getgrent()

{

_gr_init()

if (++_gr_count in _gr_bycount)

return _gr_bycount[_gr_count]

return ""

}

The endgrent() function resets _gr_count to zero so that getgrent() can start over
again:

function endgrent()

{

_gr_count = 0

}

As with the user database routines, each function calls _gr_init() to initialize the
arrays. Doing so only incurs the extra overhead of running grcat if these functions are
used (as opposed to moving the body of _gr_init() into a BEGIN rule).

Most of the work is in scanning the database and building the various associative arrays.
The functions that the user calls are themselves very simple, relying on awk’s associative
arrays to do work.

The id program in Section 13.2.3 [Printing out User Information], page 252, uses these
functions.

12.7 Traversing Arrays of Arrays

Section 8.6 [Arrays of Arrays], page 148, described how gawk provides arrays of arrays. In
particular, any element of an array may be either a scalar, or another array. The isarray()
function (see Section 9.1.7 [Getting Type Information], page 175) lets you distinguish an

Chapter 12: A Library of awk Functions 241

array from a scalar. The following function, walk_array(), recursively traverses an array,
printing each element’s indices and value. You call it with the array and a string representing
the name of the array:

function walk_array(arr, name, i)

{

for (i in arr) {

if (isarray(arr[i]))

walk_array(arr[i], (name "[" i "]"))

else

printf("%s[%s] = %s\n", name, i, arr[i])

}

}

It works by looping over each element of the array. If any given element is itself an array,
the function calls itself recursively, passing the subarray and a new string representing the
current index. Otherwise, the function simply prints the element’s name, index, and value.
Here is a main program to demonstrate:

BEGIN {

a[1] = 1

a[2][1] = 21

a[2][2] = 22

a[3] = 3

a[4][1][1] = 411

a[4][2] = 42

walk_array(a, "a")

}

When run, the program produces the following output:

$ gawk -f walk_array.awk

a a[4][1][1] = 411

a a[4][2] = 42

a a[1] = 1

a a[2][1] = 21

a a[2][2] = 22

a a[3] = 3

Chapter 13: Practical awk Programs 243

13 Practical awk Programs

Chapter 12 [A Library of awk Functions], page 213, presents the idea that reading programs
in a language contributes to learning that language. This chapter continues that theme, pre-
senting a potpourri of awk programs for your reading enjoyment. There are three sections.
The first describes how to run the programs presented in this chapter.

The second presents awk versions of several common POSIX utilities. These are programs
that you are hopefully already familiar with, and therefore, whose problems are understood.
By reimplementing these programs in awk, you can focus on the awk-related aspects of
solving the programming problem.

The third is a grab bag of interesting programs. These solve a number of different
data-manipulation and management problems. Many of the programs are short, which
emphasizes awk’s ability to do a lot in just a few lines of code.

Many of these programs use library functions presented in Chapter 12 [A Library of awk
Functions], page 213.

13.1 Running the Example Programs

To run a given program, you would typically do something like this:

awk -f program -- options files

Here, program is the name of the awk program (such as cut.awk), options are any command-
line options for the program that start with a ‘-’, and files are the actual data files.

If your system supports the ‘#!’ executable interpreter mechanism (see Section 1.1.4
[Executable awk Programs], page 13), you can instead run your program directly:

cut.awk -c1-8 myfiles > results

If your awk is not gawk, you may instead need to use this:

cut.awk -- -c1-8 myfiles > results

13.2 Reinventing Wheels for Fun and Profit

This section presents a number of POSIX utilities implemented in awk. Reinventing these
programs in awk is often enjoyable, because the algorithms can be very clearly expressed,
and the code is usually very concise and simple. This is true because awk does so much for
you.

It should be noted that these programs are not necessarily intended to replace the in-
stalled versions on your system. Nor may all of these programs be fully compliant with
the most recent POSIX standard. This is not a problem; their purpose is to illustrate awk

language programming for “real world” tasks.

The programs are presented in alphabetical order.

13.2.1 Cutting out Fields and Columns

The cut utility selects, or “cuts,” characters or fields from its standard input and sends
them to its standard output. Fields are separated by TABs by default, but you may supply
a command-line option to change the field delimiter (i.e., the field-separator character).
cut’s definition of fields is less general than awk’s.

244 GAWK: Effective AWK Programming

A common use of cut might be to pull out just the login name of logged-on users from
the output of who. For example, the following pipeline generates a sorted, unique list of the
logged-on users:

who | cut -c1-8 | sort | uniq

The options for cut are:

-c list Use list as the list of characters to cut out. Items within the list may be
separated by commas, and ranges of characters can be separated with dashes.
The list ‘1-8,15,22-35’ specifies characters 1 through 8, 15, and 22 through
35.

-f list Use list as the list of fields to cut out.

-d delim Use delim as the field-separator character instead of the TAB character.

-s Suppress printing of lines that do not contain the field delimiter.

The awk implementation of cut uses the getopt() library function (see Section 12.4
[Processing Command-Line Options], page 227) and the join() library function (see
Section 12.2.6 [Merging an Array into a String], page 220).

The program begins with a comment describing the options, the library functions needed,
and a usage() function that prints out a usage message and exits. usage() is called if
invalid arguments are supplied:

cut.awk --- implement cut in awk

Options:

-f list Cut fields

-d c Field delimiter character

-c list Cut characters

#

-s Suppress lines without the delimiter

#

Requires getopt() and join() library functions

function usage(e1, e2)

{

e1 = "usage: cut [-f list] [-d c] [-s] [files...]"

e2 = "usage: cut [-c list] [files...]"

print e1 > "/dev/stderr"

print e2 > "/dev/stderr"

exit 1

}

The variables e1 and e2 are used so that the function fits nicely on the page.

Next comes a BEGIN rule that parses the command-line options. It sets FS to a single
TAB character, because that is cut’s default field separator. The rule then sets the output
field separator to be the same as the input field separator. A loop using getopt() steps
through the command-line options. Exactly one of the variables by_fields or by_chars is
set to true, to indicate that processing should be done by fields or by characters, respectively.
When cutting by characters, the output field separator is set to the null string:

Chapter 13: Practical awk Programs 245

BEGIN \

{

FS = "\t" # default

OFS = FS

while ((c = getopt(ARGC, ARGV, "sf:c:d:")) != -1) {

if (c == "f") {

by_fields = 1

fieldlist = Optarg

} else if (c == "c") {

by_chars = 1

fieldlist = Optarg

OFS = ""

} else if (c == "d") {

if (length(Optarg) > 1) {

printf("Using first character of %s" \

" for delimiter\n", Optarg) > "/dev/stderr"

Optarg = substr(Optarg, 1, 1)

}

FS = Optarg

OFS = FS

if (FS == " ") # defeat awk semantics

FS = "[]"

} else if (c == "s")

suppress++

else

usage()

}

Clear out options

for (i = 1; i < Optind; i++)

ARGV[i] = ""

The code must take special care when the field delimiter is a space. Using a single space
(" ") for the value of FS is incorrect—awk would separate fields with runs of spaces, TABs,
and/or newlines, and we want them to be separated with individual spaces. Also remember
that after getopt() is through (as described in Section 12.4 [Processing Command-Line
Options], page 227), we have to clear out all the elements of ARGV from 1 to Optind, so that
awk does not try to process the command-line options as file names.

After dealing with the command-line options, the program verifies that the options make
sense. Only one or the other of -c and -f should be used, and both require a field list.
Then the program calls either set_fieldlist() or set_charlist() to pull apart the list
of fields or characters:

if (by_fields && by_chars)

usage()

if (by_fields == 0 && by_chars == 0)

by_fields = 1 # default

246 GAWK: Effective AWK Programming

if (fieldlist == "") {

print "cut: needs list for -c or -f" > "/dev/stderr"

exit 1

}

if (by_fields)

set_fieldlist()

else

set_charlist()

}

set_fieldlist() splits the field list apart at the commas into an array. Then, for each
element of the array, it looks to see if the element is actually a range, and if so, splits it
apart. The function checks the range to make sure that the first number is smaller than the
second. Each number in the list is added to the flist array, which simply lists the fields
that will be printed. Normal field splitting is used. The program lets awk handle the job of
doing the field splitting:

function set_fieldlist(n, m, i, j, k, f, g)

{

n = split(fieldlist, f, ",")

j = 1 # index in flist

for (i = 1; i <= n; i++) {

if (index(f[i], "-") != 0) { # a range

m = split(f[i], g, "-")

if (m != 2 || g[1] >= g[2]) {

printf("bad field list: %s\n",

f[i]) > "/dev/stderr"

exit 1

}

for (k = g[1]; k <= g[2]; k++)

flist[j++] = k

} else

flist[j++] = f[i]

}

nfields = j - 1

}

The set_charlist() function is more complicated than set_fieldlist(). The idea
here is to use gawk’s FIELDWIDTHS variable (see Section 4.6 [Reading Fixed-Width Data],
page 61), which describes constant-width input. When using a character list, that is exactly
what we have.

Setting up FIELDWIDTHS is more complicated than simply listing the fields that need to
be printed. We have to keep track of the fields to print and also the intervening characters
that have to be skipped. For example, suppose you wanted characters 1 through 8, 15, and
22 through 35. You would use ‘-c 1-8,15,22-35’. The necessary value for FIELDWIDTHS
is "8 6 1 6 14". This yields five fields, and the fields to print are $1, $3, and $5. The

Chapter 13: Practical awk Programs 247

intermediate fields are filler, which is stuff in between the desired data. flist lists the
fields to print, and t tracks the complete field list, including filler fields:

function set_charlist(field, i, j, f, g, t,

filler, last, len)

{

field = 1 # count total fields

n = split(fieldlist, f, ",")

j = 1 # index in flist

for (i = 1; i <= n; i++) {

if (index(f[i], "-") != 0) { # range

m = split(f[i], g, "-")

if (m != 2 || g[1] >= g[2]) {

printf("bad character list: %s\n",

f[i]) > "/dev/stderr"

exit 1

}

len = g[2] - g[1] + 1

if (g[1] > 1) # compute length of filler

filler = g[1] - last - 1

else

filler = 0

if (filler)

t[field++] = filler

t[field++] = len # length of field

last = g[2]

flist[j++] = field - 1

} else {

if (f[i] > 1)

filler = f[i] - last - 1

else

filler = 0

if (filler)

t[field++] = filler

t[field++] = 1

last = f[i]

flist[j++] = field - 1

}

}

FIELDWIDTHS = join(t, 1, field - 1)

nfields = j - 1

}

Next is the rule that actually processes the data. If the -s option is given, then suppress

is true. The first if statement makes sure that the input record does have the field separator.
If cut is processing fields, suppress is true, and the field separator character is not in the
record, then the record is skipped.

248 GAWK: Effective AWK Programming

If the record is valid, then gawk has split the data into fields, either using the character
in FS or using fixed-length fields and FIELDWIDTHS. The loop goes through the list of fields
that should be printed. The corresponding field is printed if it contains data. If the next
field also has data, then the separator character is written out between the fields:

{

if (by_fields && suppress && index($0, FS) != 0)

next

for (i = 1; i <= nfields; i++) {

if ($flist[i] != "") {

printf "%s", $flist[i]

if (i < nfields && $flist[i+1] != "")

printf "%s", OFS

}

}

print ""

}

This version of cut relies on gawk’s FIELDWIDTHS variable to do the character-based
cutting. While it is possible in other awk implementations to use substr() (see Section 9.1.3
[String-Manipulation Functions], page 153), it is also extremely painful. The FIELDWIDTHS
variable supplies an elegant solution to the problem of picking the input line apart by
characters.

13.2.2 Searching for Regular Expressions in Files

The egrep utility searches files for patterns. It uses regular expressions that are almost
identical to those available in awk (see Chapter 3 [Regular Expressions], page 37). You
invoke it as follows:

egrep [options] ’pattern’ files ...

The pattern is a regular expression. In typical usage, the regular expression is quoted
to prevent the shell from expanding any of the special characters as file name wildcards.
Normally, egrep prints the lines that matched. If multiple file names are provided on the
command line, each output line is preceded by the name of the file and a colon.

The options to egrep are as follows:

-c Print out a count of the lines that matched the pattern, instead of the lines
themselves.

-s Be silent. No output is produced and the exit value indicates whether the
pattern was matched.

-v Invert the sense of the test. egrep prints the lines that do not match the pattern
and exits successfully if the pattern is not matched.

-i Ignore case distinctions in both the pattern and the input data.

-l Only print (list) the names of the files that matched, not the lines that matched.

-e pattern

Use pattern as the regexp to match. The purpose of the -e option is to allow
patterns that start with a ‘-’.

Chapter 13: Practical awk Programs 249

This version uses the getopt() library function (see Section 12.4 [Processing Command-
Line Options], page 227) and the file transition library program (see Section 12.3.1 [Noting
Data File Boundaries], page 223).

The program begins with a descriptive comment and then a BEGIN rule that processes
the command-line arguments with getopt(). The -i (ignore case) option is particularly
easy with gawk; we just use the IGNORECASE built-in variable (see Section 7.5 [Built-in
Variables], page 128):

egrep.awk --- simulate egrep in awk

#

Options:

-c count of lines

-s silent - use exit value

-v invert test, success if no match

-i ignore case

-l print filenames only

-e argument is pattern

#

Requires getopt and file transition library functions

BEGIN {

while ((c = getopt(ARGC, ARGV, "ce:svil")) != -1) {

if (c == "c")

count_only++

else if (c == "s")

no_print++

else if (c == "v")

invert++

else if (c == "i")

IGNORECASE = 1

else if (c == "l")

filenames_only++

else if (c == "e")

pattern = Optarg

else

usage()

}

Next comes the code that handles the egrep-specific behavior. If no pattern is supplied
with -e, the first nonoption on the command line is used. The awk command-line arguments
up to ARGV[Optind] are cleared, so that awk won’t try to process them as files. If no files
are specified, the standard input is used, and if multiple files are specified, we make sure to
note this so that the file names can precede the matched lines in the output:

if (pattern == "")

pattern = ARGV[Optind++]

for (i = 1; i < Optind; i++)

ARGV[i] = ""

250 GAWK: Effective AWK Programming

if (Optind >= ARGC) {

ARGV[1] = "-"

ARGC = 2

} else if (ARGC - Optind > 1)

do_filenames++

if (IGNORECASE)

pattern = tolower(pattern)

}

The last two lines are commented out, since they are not needed in gawk. They should
be uncommented if you have to use another version of awk.

The next set of lines should be uncommented if you are not using gawk. This rule
translates all the characters in the input line into lowercase if the -i option is specified.1

The rule is commented out since it is not necessary with gawk:

#{

if (IGNORECASE)

$0 = tolower($0)

#}

The beginfile() function is called by the rule in ftrans.awk when each new file is
processed. In this case, it is very simple; all it does is initialize a variable fcount to
zero. fcount tracks how many lines in the current file matched the pattern. Naming the
parameter junk shows we know that beginfile() is called with a parameter, but that
we’re not interested in its value:

function beginfile(junk)

{

fcount = 0

}

The endfile() function is called after each file has been processed. It affects the output
only when the user wants a count of the number of lines that matched. no_print is true
only if the exit status is desired. count_only is true if line counts are desired. egrep

therefore only prints line counts if printing and counting are enabled. The output format
must be adjusted depending upon the number of files to process. Finally, fcount is added
to total, so that we know the total number of lines that matched the pattern:

function endfile(file)

{

if (! no_print && count_only) {

if (do_filenames)

print file ":" fcount

else

print fcount

}

total += fcount

1 It also introduces a subtle bug; if a match happens, we output the translated line, not the original.

Chapter 13: Practical awk Programs 251

}

The following rule does most of the work of matching lines. The variable matches is
true if the line matched the pattern. If the user wants lines that did not match, the sense
of matches is inverted using the ‘!’ operator. fcount is incremented with the value of
matches, which is either one or zero, depending upon a successful or unsuccessful match.
If the line does not match, the next statement just moves on to the next record.

A number of additional tests are made, but they are only done if we are not counting
lines. First, if the user only wants exit status (no_print is true), then it is enough to
know that one line in this file matched, and we can skip on to the next file with nextfile.
Similarly, if we are only printing file names, we can print the file name, and then skip to the
next file with nextfile. Finally, each line is printed, with a leading file name and colon if
necessary:

{

matches = ($0 ~ pattern)

if (invert)

matches = ! matches

fcount += matches # 1 or 0

if (! matches)

next

if (! count_only) {

if (no_print)

nextfile

if (filenames_only) {

print FILENAME

nextfile

}

if (do_filenames)

print FILENAME ":" $0

else

print

}

}

The END rule takes care of producing the correct exit status. If there are no matches,
the exit status is one; otherwise it is zero:

END \

{

if (total == 0)

exit 1

exit 0

}

The usage() function prints a usage message in case of invalid options, and then exits:

252 GAWK: Effective AWK Programming

function usage(e)

{

e = "Usage: egrep [-csvil] [-e pat] [files ...]"

e = e "\n\tegrep [-csvil] pat [files ...]"

print e > "/dev/stderr"

exit 1

}

The variable e is used so that the function fits nicely on the printed page.

Just a note on programming style: you may have noticed that the END rule uses backslash
continuation, with the open brace on a line by itself. This is so that it more closely resembles
the way functions are written. Many of the examples in this chapter use this style. You
can decide for yourself if you like writing your BEGIN and END rules this way or not.

13.2.3 Printing out User Information

The id utility lists a user’s real and effective user ID numbers, real and effective group ID
numbers, and the user’s group set, if any. id only prints the effective user ID and group ID
if they are different from the real ones. If possible, id also supplies the corresponding user
and group names. The output might look like this:

$ id

a uid=500(arnold) gid=500(arnold) groups=6(disk),7(lp),19(floppy)

This information is part of what is provided by gawk’s PROCINFO array (see Section 7.5
[Built-in Variables], page 128). However, the id utility provides a more palatable output
than just individual numbers.

Here is a simple version of id written in awk. It uses the user database library functions
(see Section 12.5 [Reading the User Database], page 232) and the group database library
functions (see Section 12.6 [Reading the Group Database], page 236):

The program is fairly straightforward. All the work is done in the BEGIN rule. The user
and group ID numbers are obtained from PROCINFO. The code is repetitive. The entry in
the user database for the real user ID number is split into parts at the ‘:’. The name is the
first field. Similar code is used for the effective user ID number and the group numbers:

id.awk --- implement id in awk

#

Requires user and group library functions

output is:

uid=12(foo) euid=34(bar) gid=3(baz) \

egid=5(blat) groups=9(nine),2(two),1(one)

BEGIN \

{

uid = PROCINFO["uid"]

euid = PROCINFO["euid"]

gid = PROCINFO["gid"]

egid = PROCINFO["egid"]

printf("uid=%d", uid)

Chapter 13: Practical awk Programs 253

pw = getpwuid(uid)

if (pw != "") {

split(pw, a, ":")

printf("(%s)", a[1])

}

if (euid != uid) {

printf(" euid=%d", euid)

pw = getpwuid(euid)

if (pw != "") {

split(pw, a, ":")

printf("(%s)", a[1])

}

}

printf(" gid=%d", gid)

pw = getgrgid(gid)

if (pw != "") {

split(pw, a, ":")

printf("(%s)", a[1])

}

if (egid != gid) {

printf(" egid=%d", egid)

pw = getgrgid(egid)

if (pw != "") {

split(pw, a, ":")

printf("(%s)", a[1])

}

}

for (i = 1; ("group" i) in PROCINFO; i++) {

if (i == 1)

printf(" groups=")

group = PROCINFO["group" i]

printf("%d", group)

pw = getgrgid(group)

if (pw != "") {

split(pw, a, ":")

printf("(%s)", a[1])

}

if (("group" (i+1)) in PROCINFO)

printf(",")

}

print ""

}

254 GAWK: Effective AWK Programming

The test in the for loop is worth noting. Any supplementary groups in the PROCINFO

array have the indices "group1" through "groupN" for some N, i.e., the total number of
supplementary groups. However, we don’t know in advance how many of these groups there
are.

This loop works by starting at one, concatenating the value with "group", and then
using in to see if that value is in the array. Eventually, i is incremented past the last group
in the array and the loop exits.

The loop is also correct if there are no supplementary groups; then the condition is false
the first time it’s tested, and the loop body never executes.

13.2.4 Splitting a Large File into Pieces

The split program splits large text files into smaller pieces. Usage is as follows:2

split [-count] file [prefix]

By default, the output files are named xaa, xab, and so on. Each file has 1000 lines in it,
with the likely exception of the last file. To change the number of lines in each file, supply
a number on the command line preceded with a minus; e.g., ‘-500’ for files with 500 lines in
them instead of 1000. To change the name of the output files to something like myfileaa,
myfileab, and so on, supply an additional argument that specifies the file name prefix.

Here is a version of split in awk. It uses the ord() and chr() functions presented in
Section 12.2.5 [Translating Between Characters and Numbers], page 219.

The program first sets its defaults, and then tests to make sure there are not too many
arguments. It then looks at each argument in turn. The first argument could be a minus
sign followed by a number. If it is, this happens to look like a negative number, so it is
made positive, and that is the count of lines. The data file name is skipped over and the
final argument is used as the prefix for the output file names:

split.awk --- do split in awk

#

Requires ord() and chr() library functions

usage: split [-num] [file] [outname]

BEGIN {

outfile = "x" # default

count = 1000

if (ARGC > 4)

usage()

i = 1

if (ARGV[i] ~ /^-[[:digit:]]+$/) {

count = -ARGV[i]

ARGV[i] = ""

i++

}

test argv in case reading from stdin instead of file

2 This is the traditional usage. The POSIX usage is different, but not relevant for what the program aims
to demonstrate.

Chapter 13: Practical awk Programs 255

if (i in ARGV)

i++ # skip data file name

if (i in ARGV) {

outfile = ARGV[i]

ARGV[i] = ""

}

s1 = s2 = "a"

out = (outfile s1 s2)

}

The next rule does most of the work. tcount (temporary count) tracks how many lines
have been printed to the output file so far. If it is greater than count, it is time to close
the current file and start a new one. s1 and s2 track the current suffixes for the file name.
If they are both ‘z’, the file is just too big. Otherwise, s1 moves to the next letter in the
alphabet and s2 starts over again at ‘a’:

{

if (++tcount > count) {

close(out)

if (s2 == "z") {

if (s1 == "z") {

printf("split: %s is too large to split\n",

FILENAME) > "/dev/stderr"

exit 1

}

s1 = chr(ord(s1) + 1)

s2 = "a"

}

else

s2 = chr(ord(s2) + 1)

out = (outfile s1 s2)

tcount = 1

}

print > out

}

The usage() function simply prints an error message and exits:

function usage(e)

{

e = "usage: split [-num] [file] [outname]"

print e > "/dev/stderr"

exit 1

}

The variable e is used so that the function fits nicely on the page.

This program is a bit sloppy; it relies on awk to automatically close the last file instead
of doing it in an END rule. It also assumes that letters are contiguous in the character set,
which isn’t true for EBCDIC systems.

256 GAWK: Effective AWK Programming

13.2.5 Duplicating Output into Multiple Files

The tee program is known as a “pipe fitting.” tee copies its standard input to its standard
output and also duplicates it to the files named on the command line. Its usage is as follows:

tee [-a] file ...

The -a option tells tee to append to the named files, instead of truncating them and
starting over.

The BEGIN rule first makes a copy of all the command-line arguments into an array
named copy. ARGV[0] is not copied, since it is not needed. tee cannot use ARGV directly,
since awk attempts to process each file name in ARGV as input data.

If the first argument is -a, then the flag variable append is set to true, and both ARGV[1]

and copy[1] are deleted. If ARGC is less than two, then no file names were supplied and
tee prints a usage message and exits. Finally, awk is forced to read the standard input by
setting ARGV[1] to "-" and ARGC to two:

tee.awk --- tee in awk

#

Copy standard input to all named output files.

Append content if -a option is supplied.

#

BEGIN \

{

for (i = 1; i < ARGC; i++)

copy[i] = ARGV[i]

if (ARGV[1] == "-a") {

append = 1

delete ARGV[1]

delete copy[1]

ARGC--

}

if (ARGC < 2) {

print "usage: tee [-a] file ..." > "/dev/stderr"

exit 1

}

ARGV[1] = "-"

ARGC = 2

}

The following single rule does all the work. Since there is no pattern, it is executed for
each line of input. The body of the rule simply prints the line into each file on the command
line, and then to the standard output:

{

moving the if outside the loop makes it run faster

if (append)

for (i in copy)

print >> copy[i]

else

Chapter 13: Practical awk Programs 257

for (i in copy)

print > copy[i]

print

}

It is also possible to write the loop this way:

for (i in copy)

if (append)

print >> copy[i]

else

print > copy[i]

This is more concise but it is also less efficient. The ‘if’ is tested for each record and for
each output file. By duplicating the loop body, the ‘if’ is only tested once for each input
record. If there are N input records and M output files, the first method only executes N
‘if’ statements, while the second executes N*M ‘if’ statements.

Finally, the END rule cleans up by closing all the output files:

END \

{

for (i in copy)

close(copy[i])

}

13.2.6 Printing Nonduplicated Lines of Text

The uniq utility reads sorted lines of data on its standard input, and by default removes
duplicate lines. In other words, it only prints unique lines—hence the name. uniq has a
number of options. The usage is as follows:

uniq [-udc [-n]] [+n] [input file [output file]]

The options for uniq are:

-d Print only repeated lines.

-u Print only nonrepeated lines.

-c Count lines. This option overrides -d and -u. Both repeated and nonrepeated
lines are counted.

-n Skip n fields before comparing lines. The definition of fields is similar to awk’s
default: nonwhitespace characters separated by runs of spaces and/or TABs.

+n Skip n characters before comparing lines. Any fields specified with ‘-n’ are
skipped first.

input file

Data is read from the input file named on the command line, instead of from
the standard input.

output file

The generated output is sent to the named output file, instead of to the standard
output.

258 GAWK: Effective AWK Programming

Normally uniq behaves as if both the -d and -u options are provided.

uniq uses the getopt() library function (see Section 12.4 [Processing Command-Line
Options], page 227) and the join() library function (see Section 12.2.6 [Merging an Array
into a String], page 220).

The program begins with a usage() function and then a brief outline of the options and
their meanings in comments. The BEGIN rule deals with the command-line arguments and
options. It uses a trick to get getopt() to handle options of the form ‘-25’, treating such
an option as the option letter ‘2’ with an argument of ‘5’. If indeed two or more digits
are supplied (Optarg looks like a number), Optarg is concatenated with the option digit
and then the result is added to zero to make it into a number. If there is only one digit in
the option, then Optarg is not needed. In this case, Optind must be decremented so that
getopt() processes it next time. This code is admittedly a bit tricky.

If no options are supplied, then the default is taken, to print both repeated and nonre-
peated lines. The output file, if provided, is assigned to outputfile. Early on, outputfile
is initialized to the standard output, /dev/stdout:

uniq.awk --- do uniq in awk

#

Requires getopt() and join() library functions

function usage(e)

{

e = "Usage: uniq [-udc [-n]] [+n] [in [out]]"

print e > "/dev/stderr"

exit 1

}

-c count lines. overrides -d and -u

-d only repeated lines

-u only nonrepeated lines

-n skip n fields

+n skip n characters, skip fields first

BEGIN \

{

count = 1

outputfile = "/dev/stdout"

opts = "udc0:1:2:3:4:5:6:7:8:9:"

while ((c = getopt(ARGC, ARGV, opts)) != -1) {

if (c == "u")

non_repeated_only++

else if (c == "d")

repeated_only++

else if (c == "c")

do_count++

else if (index("0123456789", c) != 0) {

getopt requires args to options

Chapter 13: Practical awk Programs 259

this messes us up for things like -5

if (Optarg ~ /^[[:digit:]]+$/)

fcount = (c Optarg) + 0

else {

fcount = c + 0

Optind--

}

} else

usage()

}

if (ARGV[Optind] ~ /^\+[[:digit:]]+$/) {

charcount = substr(ARGV[Optind], 2) + 0

Optind++

}

for (i = 1; i < Optind; i++)

ARGV[i] = ""

if (repeated_only == 0 && non_repeated_only == 0)

repeated_only = non_repeated_only = 1

if (ARGC - Optind == 2) {

outputfile = ARGV[ARGC - 1]

ARGV[ARGC - 1] = ""

}

}

The following function, are_equal(), compares the current line, $0, to the previous
line, last. It handles skipping fields and characters. If no field count and no character
count are specified, are_equal() simply returns one or zero depending upon the result of
a simple string comparison of last and $0. Otherwise, things get more complicated. If
fields have to be skipped, each line is broken into an array using split() (see Section 9.1.3
[String-Manipulation Functions], page 153); the desired fields are then joined back into a
line using join(). The joined lines are stored in clast and cline. If no fields are skipped,
clast and cline are set to last and $0, respectively. Finally, if characters are skipped,
substr() is used to strip off the leading charcount characters in clast and cline. The
two strings are then compared and are_equal() returns the result:

function are_equal(n, m, clast, cline, alast, aline)

{

if (fcount == 0 && charcount == 0)

return (last == $0)

if (fcount > 0) {

n = split(last, alast)

m = split($0, aline)

clast = join(alast, fcount+1, n)

260 GAWK: Effective AWK Programming

cline = join(aline, fcount+1, m)

} else {

clast = last

cline = $0

}

if (charcount) {

clast = substr(clast, charcount + 1)

cline = substr(cline, charcount + 1)

}

return (clast == cline)

}

The following two rules are the body of the program. The first one is executed only for
the very first line of data. It sets last equal to $0, so that subsequent lines of text have
something to be compared to.

The second rule does the work. The variable equal is one or zero, depending upon the
results of are_equal()’s comparison. If uniq is counting repeated lines, and the lines are
equal, then it increments the count variable. Otherwise, it prints the line and resets count,
since the two lines are not equal.

If uniq is not counting, and if the lines are equal, count is incremented. Nothing is
printed, since the point is to remove duplicates. Otherwise, if uniq is counting repeated
lines and more than one line is seen, or if uniq is counting nonrepeated lines and only one
line is seen, then the line is printed, and count is reset.

Finally, similar logic is used in the END rule to print the final line of input data:

NR == 1 {

last = $0

next

}

{

equal = are_equal()

if (do_count) { # overrides -d and -u

if (equal)

count++

else {

printf("%4d %s\n", count, last) > outputfile

last = $0

count = 1 # reset

}

next

}

if (equal)

count++

else {

Chapter 13: Practical awk Programs 261

if ((repeated_only && count > 1) ||

(non_repeated_only && count == 1))

print last > outputfile

last = $0

count = 1

}

}

END {

if (do_count)

printf("%4d %s\n", count, last) > outputfile

else if ((repeated_only && count > 1) ||

(non_repeated_only && count == 1))

print last > outputfile

close(outputfile)

}

13.2.7 Counting Things

The wc (word count) utility counts lines, words, and characters in one or more input files.
Its usage is as follows:

wc [-lwc] [files ...]

If no files are specified on the command line, wc reads its standard input. If there are
multiple files, it also prints total counts for all the files. The options and their meanings
are shown in the following list:

-l Count only lines.

-w Count only words. A “word” is a contiguous sequence of nonwhitespace char-
acters, separated by spaces and/or TABs. Luckily, this is the normal way awk

separates fields in its input data.

-c Count only characters.

Implementing wc in awk is particularly elegant, since awk does a lot of the work for us;
it splits lines into words (i.e., fields) and counts them, it counts lines (i.e., records), and it
can easily tell us how long a line is.

This program uses the getopt() library function (see Section 12.4 [Processing
Command-Line Options], page 227) and the file-transition functions (see Section 12.3.1
[Noting Data File Boundaries], page 223).

This version has one notable difference from traditional versions of wc: it always prints
the counts in the order lines, words, and characters. Traditional versions note the order of
the -l, -w, and -c options on the command line, and print the counts in that order.

The BEGIN rule does the argument processing. The variable print_total is true if more
than one file is named on the command line:

wc.awk --- count lines, words, characters

Options:

-l only count lines

262 GAWK: Effective AWK Programming

-w only count words

-c only count characters

#

Default is to count lines, words, characters

#

Requires getopt() and file transition library functions

BEGIN {

let getopt() print a message about

invalid options. we ignore them

while ((c = getopt(ARGC, ARGV, "lwc")) != -1) {

if (c == "l")

do_lines = 1

else if (c == "w")

do_words = 1

else if (c == "c")

do_chars = 1

}

for (i = 1; i < Optind; i++)

ARGV[i] = ""

if no options, do all

if (! do_lines && ! do_words && ! do_chars)

do_lines = do_words = do_chars = 1

print_total = (ARGC - i > 2)

}

The beginfile() function is simple; it just resets the counts of lines, words, and char-
acters to zero, and saves the current file name in fname:

function beginfile(file)

{

lines = words = chars = 0

fname = FILENAME

}

The endfile() function adds the current file’s numbers to the running totals of lines,
words, and characters.3 It then prints out those numbers for the file that was just read. It
relies on beginfile() to reset the numbers for the following data file:

function endfile(file)

{

tlines += lines

twords += words

tchars += chars

if (do_lines)

3 wc can’t just use the value of FNR in endfile(). If you examine the code in Section 12.3.1 [Noting Data
File Boundaries], page 223, you will see that FNR has already been reset by the time endfile() is called.

Chapter 13: Practical awk Programs 263

printf "\t%d", lines

if (do_words)

printf "\t%d", words

if (do_chars)

printf "\t%d", chars

printf "\t%s\n", fname

}

There is one rule that is executed for each line. It adds the length of the record, plus
one, to chars.4 Adding one plus the record length is needed because the newline character
separating records (the value of RS) is not part of the record itself, and thus not included
in its length. Next, lines is incremented for each line read, and words is incremented by
the value of NF, which is the number of “words” on this line:

do per line

{

chars += length($0) + 1 # get newline

lines++

words += NF

}

Finally, the END rule simply prints the totals for all the files:

END {

if (print_total) {

if (do_lines)

printf "\t%d", tlines

if (do_words)

printf "\t%d", twords

if (do_chars)

printf "\t%d", tchars

print "\ttotal"

}

}

13.3 A Grab Bag of awk Programs

This section is a large “grab bag” of miscellaneous programs. We hope you find them both
interesting and enjoyable.

13.3.1 Finding Duplicated Words in a Document

A common error when writing large amounts of prose is to accidentally duplicate words.
Typically you will see this in text as something like “the the program does the following. . . ”
When the text is online, often the duplicated words occur at the end of one line and the
the beginning of another, making them very difficult to spot.

This program, dupword.awk, scans through a file one line at a time and looks for adjacent
occurrences of the same word. It also saves the last word on a line (in the variable prev)
for comparison with the first word on the next line.

4 Since gawk understands multibyte locales, this code counts characters, not bytes.

264 GAWK: Effective AWK Programming

The first two statements make sure that the line is all lowercase, so that, for example,
“The” and “the” compare equal to each other. The next statement replaces nonalphanu-
meric and nonwhitespace characters with spaces, so that punctuation does not affect the
comparison either. The characters are replaced with spaces so that formatting controls
don’t create nonsense words (e.g., the Texinfo ‘@code{NF}’ becomes ‘codeNF’ if punctua-
tion is simply deleted). The record is then resplit into fields, yielding just the actual words
on the line, and ensuring that there are no empty fields.

If there are no fields left after removing all the punctuation, the current record is skipped.
Otherwise, the program loops through each word, comparing it to the previous one:

dupword.awk --- find duplicate words in text

{

$0 = tolower($0)

gsub(/[^[:alnum:][:blank:]]/, " ");

$0 = $0 # re-split

if (NF == 0)

next

if ($1 == prev)

printf("%s:%d: duplicate %s\n",

FILENAME, FNR, $1)

for (i = 2; i <= NF; i++)

if ($i == $(i-1))

printf("%s:%d: duplicate %s\n",

FILENAME, FNR, $i)

prev = $NF

}

13.3.2 An Alarm Clock Program

Nothing cures insomnia like a ringing alarm clock.
Arnold Robbins

The following program is a simple “alarm clock” program. You give it a time of day and
an optional message. At the specified time, it prints the message on the standard output.
In addition, you can give it the number of times to repeat the message as well as a delay
between repetitions.

This program uses the gettimeofday() function from Section 12.2.7 [Managing the
Time of Day], page 221.

All the work is done in the BEGIN rule. The first part is argument checking and setting
of defaults: the delay, the count, and the message to print. If the user supplied a message
without the ASCII BEL character (known as the “alert” character, "\a"), then it is added
to the message. (On many systems, printing the ASCII BEL generates an audible alert.
Thus when the alarm goes off, the system calls attention to itself in case the user is not
looking at the computer.) Just for a change, this program uses a switch statement (see
Section 7.4.5 [The switch Statement], page 123), but the processing could be done with a
series of if-else statements instead. Here is the program:

alarm.awk --- set an alarm

#

Chapter 13: Practical awk Programs 265

Requires gettimeofday() library function

usage: alarm time ["message" [count [delay]]]

BEGIN \

{

Initial argument sanity checking

usage1 = "usage: alarm time [’message’ [count [delay]]]"

usage2 = sprintf("\t(%s) time ::= hh:mm", ARGV[1])

if (ARGC < 2) {

print usage1 > "/dev/stderr"

print usage2 > "/dev/stderr"

exit 1

}

switch (ARGC) {

case 5:

delay = ARGV[4] + 0

fall through

case 4:

count = ARGV[3] + 0

fall through

case 3:

message = ARGV[2]

break

default:

if (ARGV[1] !~ /[[:digit:]]?[[:digit:]]:[[:digit:]]{2}/) {

print usage1 > "/dev/stderr"

print usage2 > "/dev/stderr"

exit 1

}

break

}

set defaults for once we reach the desired time

if (delay == 0)

delay = 180 # 3 minutes

if (count == 0)

count = 5

if (message == "")

message = sprintf("\aIt is now %s!\a", ARGV[1])

else if (index(message, "\a") == 0)

message = "\a" message "\a"

The next section of code turns the alarm time into hours and minutes, converts it (if
necessary) to a 24-hour clock, and then turns that time into a count of the seconds since
midnight. Next it turns the current time into a count of seconds since midnight. The
difference between the two is how long to wait before setting off the alarm:

266 GAWK: Effective AWK Programming

split up alarm time

split(ARGV[1], atime, ":")

hour = atime[1] + 0 # force numeric

minute = atime[2] + 0 # force numeric

get current broken down time

gettimeofday(now)

if time given is 12-hour hours and it’s after that

hour, e.g., ‘alarm 5:30’ at 9 a.m. means 5:30 p.m.,

then add 12 to real hour

if (hour < 12 && now["hour"] > hour)

hour += 12

set target time in seconds since midnight

target = (hour * 60 * 60) + (minute * 60)

get current time in seconds since midnight

current = (now["hour"] * 60 * 60) + \

(now["minute"] * 60) + now["second"]

how long to sleep for

naptime = target - current

if (naptime <= 0) {

print "time is in the past!" > "/dev/stderr"

exit 1

}

Finally, the program uses the system() function (see Section 9.1.4 [Input/Output Func-
tions], page 165) to call the sleep utility. The sleep utility simply pauses for the given
number of seconds. If the exit status is not zero, the program assumes that sleep was
interrupted and exits. If sleep exited with an OK status (zero), then the program prints
the message in a loop, again using sleep to delay for however many seconds are necessary:

zzzzzz..... go away if interrupted

if (system(sprintf("sleep %d", naptime)) != 0)

exit 1

time to notify!

command = sprintf("sleep %d", delay)

for (i = 1; i <= count; i++) {

print message

if sleep command interrupted, go away

if (system(command) != 0)

break

}

exit 0

Chapter 13: Practical awk Programs 267

}

13.3.3 Transliterating Characters

The system tr utility transliterates characters. For example, it is often used to map upper-
case letters into lowercase for further processing:

generate data | tr ’A-Z’ ’a-z’ | process data ...

tr requires two lists of characters.5 When processing the input, the first character in
the first list is replaced with the first character in the second list, the second character in
the first list is replaced with the second character in the second list, and so on. If there are
more characters in the “from” list than in the “to” list, the last character of the “to” list is
used for the remaining characters in the “from” list.

Some time ago, a user proposed that a transliteration function should be added to gawk.
The following program was written to prove that character transliteration could be done
with a user-level function. This program is not as complete as the system tr utility but it
does most of the job.

The translate program demonstrates one of the few weaknesses of standard awk: deal-
ing with individual characters is very painful, requiring repeated use of the substr(),
index(), and gsub() built-in functions (see Section 9.1.3 [String-Manipulation Functions],
page 153).6 There are two functions. The first, stranslate(), takes three arguments:

from A list of characters from which to translate.

to A list of characters to which to translate.

target The string on which to do the translation.

Associative arrays make the translation part fairly easy. t_ar holds the “to” characters,
indexed by the “from” characters. Then a simple loop goes through from, one character at
a time. For each character in from, if the character appears in target, it is replaced with
the corresponding to character.

The translate() function simply calls stranslate() using $0 as the target. The main
program sets two global variables, FROM and TO, from the command line, and then changes
ARGV so that awk reads from the standard input.

Finally, the processing rule simply calls translate() for each record:

translate.awk --- do tr-like stuff

Bugs: does not handle things like: tr A-Z a-z, it has

to be spelled out. However, if ‘to’ is shorter than ‘from’,

the last character in ‘to’ is used for the rest of ‘from’.

function stranslate(from, to, target, lf, lt, ltarget, t_ar, i, c,

result)

{

5 On some older systems, tr may require that the lists be written as range expressions enclosed in square
brackets (‘[a-z]’) and quoted, to prevent the shell from attempting a file name expansion. This is not
a feature.

6 This program was written before gawk acquired the ability to split each character in a string into separate
array elements.

268 GAWK: Effective AWK Programming

lf = length(from)

lt = length(to)

ltarget = length(target)

for (i = 1; i <= lt; i++)

t_ar[substr(from, i, 1)] = substr(to, i, 1)

if (lt < lf)

for (; i <= lf; i++)

t_ar[substr(from, i, 1)] = substr(to, lt, 1)

for (i = 1; i <= ltarget; i++) {

c = substr(target, i, 1)

if (c in t_ar)

c = t_ar[c]

result = result c

}

return result

}

function translate(from, to)

{

return $0 = stranslate(from, to, $0)

}

main program

BEGIN {

if (ARGC < 3) {

print "usage: translate from to" > "/dev/stderr"

exit

}

FROM = ARGV[1]

TO = ARGV[2]

ARGC = 2

ARGV[1] = "-"

}

{

translate(FROM, TO)

print

}

While it is possible to do character transliteration in a user-level function, it is not
necessarily efficient, and we (the gawk authors) started to consider adding a built-in function.
However, shortly after writing this program, we learned that the System V Release 4 awk

had added the toupper() and tolower() functions (see Section 9.1.3 [String-Manipulation
Functions], page 153). These functions handle the vast majority of the cases where character
transliteration is necessary, and so we chose to simply add those functions to gawk as well
and then leave well enough alone.

Chapter 13: Practical awk Programs 269

An obvious improvement to this program would be to set up the t_ar array only once,
in a BEGIN rule. However, this assumes that the “from” and “to” lists will never change
throughout the lifetime of the program.

13.3.4 Printing Mailing Labels

Here is a “real world”7 program. This script reads lists of names and addresses and generates
mailing labels. Each page of labels has 20 labels on it, two across and 10 down. The
addresses are guaranteed to be no more than five lines of data. Each address is separated
from the next by a blank line.

The basic idea is to read 20 labels worth of data. Each line of each label is stored in the
line array. The single rule takes care of filling the line array and printing the page when
20 labels have been read.

The BEGIN rule simply sets RS to the empty string, so that awk splits records at blank
lines (see Section 4.1 [How Input Is Split into Records], page 49). It sets MAXLINES to 100,
since 100 is the maximum number of lines on the page (20 * 5 = 100).

Most of the work is done in the printpage() function. The label lines are stored se-
quentially in the line array. But they have to print horizontally; line[1] next to line[6],
line[2] next to line[7], and so on. Two loops are used to accomplish this. The outer
loop, controlled by i, steps through every 10 lines of data; this is each row of labels. The
inner loop, controlled by j, goes through the lines within the row. As j goes from 0 to 4,
‘i+j’ is the j-th line in the row, and ‘i+j+5’ is the entry next to it. The output ends up
looking something like this:

line 1 line 6

line 2 line 7

line 3 line 8

line 4 line 9

line 5 line 10

...

The printf format string ‘%-41s’ left-aligns the data and prints it within a fixed-width
field.

As a final note, an extra blank line is printed at lines 21 and 61, to keep the output
lined up on the labels. This is dependent on the particular brand of labels in use when the
program was written. You will also note that there are two blank lines at the top and two
blank lines at the bottom.

The END rule arranges to flush the final page of labels; there may not have been an even
multiple of 20 labels in the data:

labels.awk --- print mailing labels

Each label is 5 lines of data that may have blank lines.

The label sheets have 2 blank lines at the top and 2 at

the bottom.

BEGIN { RS = "" ; MAXLINES = 100 }

7 “Real world” is defined as “a program actually used to get something done.”

270 GAWK: Effective AWK Programming

function printpage(i, j)

{

if (Nlines <= 0)

return

printf "\n\n" # header

for (i = 1; i <= Nlines; i += 10) {

if (i == 21 || i == 61)

print ""

for (j = 0; j < 5; j++) {

if (i + j > MAXLINES)

break

printf " %-41s %s\n", line[i+j], line[i+j+5]

}

print ""

}

printf "\n\n" # footer

delete line

}

main rule

{

if (Count >= 20) {

printpage()

Count = 0

Nlines = 0

}

n = split($0, a, "\n")

for (i = 1; i <= n; i++)

line[++Nlines] = a[i]

for (; i <= 5; i++)

line[++Nlines] = ""

Count++

}

END \

{

printpage()

}

Chapter 13: Practical awk Programs 271

13.3.5 Generating Word-Usage Counts

When working with large amounts of text, it can be interesting to know how often different
words appear. For example, an author may overuse certain words, in which case she might
wish to find synonyms to substitute for words that appear too often. This subsection
develops a program for counting words and presenting the frequency information in a useful
format.

At first glance, a program like this would seem to do the job:

Print list of word frequencies

{

for (i = 1; i <= NF; i++)

freq[$i]++

}

END {

for (word in freq)

printf "%s\t%d\n", word, freq[word]

}

The program relies on awk’s default field splitting mechanism to break each line up into
“words,” and uses an associative array named freq, indexed by each word, to count the
number of times the word occurs. In the END rule, it prints the counts.

This program has several problems that prevent it from being useful on real text files:

• The awk language considers upper- and lowercase characters to be distinct. Therefore,
“bartender” and “Bartender” are not treated as the same word. This is undesirable,
since in normal text, words are capitalized if they begin sentences, and a frequency
analyzer should not be sensitive to capitalization.

• Words are detected using the awk convention that fields are separated just by white-
space. Other characters in the input (except newlines) don’t have any special meaning
to awk. This means that punctuation characters count as part of words.

• The output does not come out in any useful order. You’re more likely to be interested in
which words occur most frequently or in having an alphabetized table of how frequently
each word occurs.

The first problem can be solved by using tolower() to remove case distinctions. The
second problem can be solved by using gsub() to remove punctuation characters. Finally,
we solve the third problem by using the system sort utility to process the output of the
awk script. Here is the new version of the program:

wordfreq.awk --- print list of word frequencies

{

$0 = tolower($0) # remove case distinctions

remove punctuation

gsub(/[^[:alnum:]_[:blank:]]/, "", $0)

for (i = 1; i <= NF; i++)

freq[$i]++

272 GAWK: Effective AWK Programming

}

END {

for (word in freq)

printf "%s\t%d\n", word, freq[word]

}

Assuming we have saved this program in a file named wordfreq.awk, and that the data
is in file1, the following pipeline:

awk -f wordfreq.awk file1 | sort -k 2nr

produces a table of the words appearing in file1 in order of decreasing frequency.

The awk program suitably massages the data and produces a word frequency table, which
is not ordered. The awk script’s output is then sorted by the sort utility and printed on
the screen.

The options given to sort specify a sort that uses the second field of each input line
(skipping one field), that the sort keys should be treated as numeric quantities (otherwise
‘15’ would come before ‘5’), and that the sorting should be done in descending (reverse)
order.

The sort could even be done from within the program, by changing the END action to:

END {

sort = "sort -k 2nr"

for (word in freq)

printf "%s\t%d\n", word, freq[word] | sort

close(sort)

}

This way of sorting must be used on systems that do not have true pipes at the command-
line (or batch-file) level. See the general operating system documentation for more infor-
mation on how to use the sort program.

13.3.6 Removing Duplicates from Unsorted Text

The uniq program (see Section 13.2.6 [Printing Nonduplicated Lines of Text], page 257),
removes duplicate lines from sorted data.

Suppose, however, you need to remove duplicate lines from a data file but that you want
to preserve the order the lines are in. A good example of this might be a shell history file.
The history file keeps a copy of all the commands you have entered, and it is not unusual
to repeat a command several times in a row. Occasionally you might want to compact
the history by removing duplicate entries. Yet it is desirable to maintain the order of the
original commands.

This simple program does the job. It uses two arrays. The data array is indexed by
the text of each line. For each line, data[$0] is incremented. If a particular line has not
been seen before, then data[$0] is zero. In this case, the text of the line is stored in
lines[count]. Each element of lines is a unique command, and the indices of lines
indicate the order in which those lines are encountered. The END rule simply prints out the
lines, in order:

histsort.awk --- compact a shell history file

Chapter 13: Practical awk Programs 273

Thanks to Byron Rakitzis for the general idea

{

if (data[$0]++ == 0)

lines[++count] = $0

}

END {

for (i = 1; i <= count; i++)

print lines[i]

}

This program also provides a foundation for generating other useful information. For
example, using the following print statement in the END rule indicates how often a particular
command is used:

print data[lines[i]], lines[i]

This works because data[$0] is incremented each time a line is seen.

13.3.7 Extracting Programs from Texinfo Source Files

Both this chapter and the previous chapter (Chapter 12 [A Library of awk Functions],
page 213) present a large number of awk programs. If you want to experiment with these
programs, it is tedious to have to type them in by hand. Here we present a program that
can extract parts of a Texinfo input file into separate files.

This book is written in Texinfo, the GNU project’s document formatting language. A
single Texinfo source file can be used to produce both printed and online documentation.
Texinfo is fully documented in the book Texinfo—The GNU Documentation Format, avail-
able from the Free Software Foundation.

For our purposes, it is enough to know three things about Texinfo input files:

• The “at” symbol (‘@’) is special in Texinfo, much as the backslash (‘\’) is in C or awk.
Literal ‘@’ symbols are represented in Texinfo source files as ‘@@’.

• Comments start with either ‘@c’ or ‘@comment’. The file-extraction program works by
using special comments that start at the beginning of a line.

• Lines containing ‘@group’ and ‘@end group’ commands bracket example text that
should not be split across a page boundary. (Unfortunately, TEX isn’t always smart
enough to do things exactly right, so we have to give it some help.)

The following program, extract.awk, reads through a Texinfo source file and does two
things, based on the special comments. Upon seeing ‘@c system ...’, it runs a com-
mand, by extracting the command text from the control line and passing it on to the
system() function (see Section 9.1.4 [Input/Output Functions], page 165). Upon seeing
‘@c file filename’, each subsequent line is sent to the file filename, until ‘@c endfile’
is encountered. The rules in extract.awk match either ‘@c’ or ‘@comment’ by letting the
‘omment’ part be optional. Lines containing ‘@group’ and ‘@end group’ are simply removed.
extract.awk uses the join() library function (see Section 12.2.6 [Merging an Array into
a String], page 220).

The example programs in the online Texinfo source for GAWK: Effective AWK Pro-
gramming (gawk.texi) have all been bracketed inside ‘file’ and ‘endfile’ lines. The

http://texinfo.org

274 GAWK: Effective AWK Programming

gawk distribution uses a copy of extract.awk to extract the sample programs and install
many of them in a standard directory where gawk can find them. The Texinfo file looks
something like this:

...

This program has a @code{BEGIN} rule,

that prints a nice message:

@example

@c file examples/messages.awk

BEGIN @{ print "Don’t panic!" @}

@c end file

@end example

It also prints some final advice:

@example

@c file examples/messages.awk

END @{ print "Always avoid bored archeologists!" @}

@c end file

@end example

...

extract.awk begins by setting IGNORECASE to one, so that mixed upper- and lowercase
letters in the directives won’t matter.

The first rule handles calling system(), checking that a command is given (NF is at least
three) and also checking that the command exits with a zero exit status, signifying OK:

extract.awk --- extract files and run programs

from texinfo files

BEGIN { IGNORECASE = 1 }

/^@c(omment)?[\t]+system/ \

{

if (NF < 3) {

e = (FILENAME ":" FNR)

e = (e ": badly formed ‘system’ line")

print e > "/dev/stderr"

next

}

$1 = ""

$2 = ""

stat = system($0)

if (stat != 0) {

e = (FILENAME ":" FNR)

e = (e ": warning: system returned " stat)

print e > "/dev/stderr"

}

Chapter 13: Practical awk Programs 275

}

The variable e is used so that the rule fits nicely on the page.

The second rule handles moving data into files. It verifies that a file name is given in the
directive. If the file named is not the current file, then the current file is closed. Keeping
the current file open until a new file is encountered allows the use of the ‘>’ redirection for
printing the contents, keeping open file management simple.

The for loop does the work. It reads lines using getline (see Section 4.9 [Explicit Input
with getline], page 67). For an unexpected end of file, it calls the unexpected_eof()

function. If the line is an “endfile” line, then it breaks out of the loop. If the line is an
‘@group’ or ‘@end group’ line, then it ignores it and goes on to the next line. Similarly,
comments within examples are also ignored.

Most of the work is in the following few lines. If the line has no ‘@’ symbols, the program
can print it directly. Otherwise, each leading ‘@’ must be stripped off. To remove the ‘@’
symbols, the line is split into separate elements of the array a, using the split() function
(see Section 9.1.3 [String-Manipulation Functions], page 153). The ‘@’ symbol is used as the
separator character. Each element of a that is empty indicates two successive ‘@’ symbols
in the original line. For each two empty elements (‘@@’ in the original file), we have to add
a single ‘@’ symbol back in.8

When the processing of the array is finished, join() is called with the value of SUBSEP,
to rejoin the pieces back into a single line. That line is then printed to the output file:

/^@c(omment)?[\t]+file/ \

{

if (NF != 3) {

e = (FILENAME ":" FNR ": badly formed ‘file’ line")

print e > "/dev/stderr"

next

}

if ($3 != curfile) {

if (curfile != "")

close(curfile)

curfile = $3

}

for (;;) {

if ((getline line) <= 0)

unexpected_eof()

if (line ~ /^@c(omment)?[\t]+endfile/)

break

else if (line ~ /^@(end[\t]+)?group/)

continue

else if (line ~ /^@c(omment+)?[\t]+/)

continue

if (index(line, "@") == 0) {

8 This program was written before gawk had the gensub() function. Consider how you might use it to
simplify the code.

276 GAWK: Effective AWK Programming

print line > curfile

continue

}

n = split(line, a, "@")

if a[1] == "", means leading @,

don’t add one back in.

for (i = 2; i <= n; i++) {

if (a[i] == "") { # was an @@

a[i] = "@"

if (a[i+1] == "")

i++

}

}

print join(a, 1, n, SUBSEP) > curfile

}

}

An important thing to note is the use of the ‘>’ redirection. Output done with ‘>’
only opens the file once; it stays open and subsequent output is appended to the file (see
Section 5.6 [Redirecting Output of print and printf], page 83). This makes it easy to
mix program text and explanatory prose for the same sample source file (as has been done
here!) without any hassle. The file is only closed when a new data file name is encountered
or at the end of the input file.

Finally, the function unexpected_eof() prints an appropriate error message and then
exits. The END rule handles the final cleanup, closing the open file:

function unexpected_eof()

{

printf("%s:%d: unexpected EOF or error\n",

FILENAME, FNR) > "/dev/stderr"

exit 1

}

END {

if (curfile)

close(curfile)

}

13.3.8 A Simple Stream Editor

The sed utility is a stream editor, a program that reads a stream of data, makes changes to
it, and passes it on. It is often used to make global changes to a large file or to a stream of
data generated by a pipeline of commands. While sed is a complicated program in its own
right, its most common use is to perform global substitutions in the middle of a pipeline:

command1 < orig.data | sed ’s/old/new/g’ | command2 > result

Here, ‘s/old/new/g’ tells sed to look for the regexp ‘old’ on each input line and globally
replace it with the text ‘new’, i.e., all the occurrences on a line. This is similar to awk’s
gsub() function (see Section 9.1.3 [String-Manipulation Functions], page 153).

Chapter 13: Practical awk Programs 277

The following program, awksed.awk, accepts at least two command-line arguments: the
pattern to look for and the text to replace it with. Any additional arguments are treated
as data file names to process. If none are provided, the standard input is used:

awksed.awk --- do s/foo/bar/g using just print

Thanks to Michael Brennan for the idea

function usage()

{

print "usage: awksed pat repl [files...]" > "/dev/stderr"

exit 1

}

BEGIN {

validate arguments

if (ARGC < 3)

usage()

RS = ARGV[1]

ORS = ARGV[2]

don’t use arguments as files

ARGV[1] = ARGV[2] = ""

}

look ma, no hands!

{

if (RT == "")

printf "%s", $0

else

print

}

The program relies on gawk’s ability to have RS be a regexp, as well as on the setting of
RT to the actual text that terminates the record (see Section 4.1 [How Input Is Split into
Records], page 49).

The idea is to have RS be the pattern to look for. gawk automatically sets $0 to the text
between matches of the pattern. This is text that we want to keep, unmodified. Then, by
setting ORS to the replacement text, a simple print statement outputs the text we want to
keep, followed by the replacement text.

There is one wrinkle to this scheme, which is what to do if the last record doesn’t end
with text that matches RS. Using a print statement unconditionally prints the replacement
text, which is not correct. However, if the file did not end in text that matches RS, RT is
set to the null string. In this case, we can print $0 using printf (see Section 5.5 [Using
printf Statements for Fancier Printing], page 78).

The BEGIN rule handles the setup, checking for the right number of arguments and calling
usage() if there is a problem. Then it sets RS and ORS from the command-line arguments

278 GAWK: Effective AWK Programming

and sets ARGV[1] and ARGV[2] to the null string, so that they are not treated as file names
(see Section 7.5.3 [Using ARGC and ARGV], page 135).

The usage() function prints an error message and exits. Finally, the single rule handles
the printing scheme outlined above, using print or printf as appropriate, depending upon
the value of RT.

13.3.9 An Easy Way to Use Library Functions

In Section 2.7 [Including Other Files Into Your Program], page 34, we saw how gawk provides
a built-in file-inclusion capability. However, this is a gawk extension. This section provides
the motivation for making file inclusion available for standard awk, and shows how to do it
using a combination of shell and awk programming.

Using library functions in awk can be very beneficial. It encourages code reuse and the
writing of general functions. Programs are smaller and therefore clearer. However, using
library functions is only easy when writing awk programs; it is painful when running them,
requiring multiple -f options. If gawk is unavailable, then so too is the AWKPATH environ-
ment variable and the ability to put awk functions into a library directory (see Section 2.2
[Command-Line Options], page 25). It would be nice to be able to write programs in the
following manner:

library functions

@include getopt.awk

@include join.awk

...

main program

BEGIN {

while ((c = getopt(ARGC, ARGV, "a:b:cde")) != -1)

...

...

}

The following program, igawk.sh, provides this service. It simulates gawk’s searching
of the AWKPATH variable and also allows nested includes; i.e., a file that is included with
‘@include’ can contain further ‘@include’ statements. igawkmakes an effort to only include
files once, so that nested includes don’t accidentally include a library function twice.

igawk should behave just like gawk externally. This means it should accept all of gawk’s
command-line arguments, including the ability to have multiple source files specified via -f,
and the ability to mix command-line and library source files.

The program is written using the POSIX Shell (sh) command language.9 It works as
follows:

1. Loop through the arguments, saving anything that doesn’t represent awk source code
for later, when the expanded program is run.

2. For any arguments that do represent awk text, put the arguments into a shell variable
that will be expanded. There are two cases:

9 Fully explaining the sh language is beyond the scope of this book. We provide some minimal explanations,
but see a good shell programming book if you wish to understand things in more depth.

Chapter 13: Practical awk Programs 279

a. Literal text, provided with --source or --source=. This text is just appended
directly.

b. Source file names, provided with -f. We use a neat trick and append ‘@include
filename’ to the shell variable’s contents. Since the file-inclusion program works
the way gawk does, this gets the text of the file included into the program at the
correct point.

3. Run an awk program (naturally) over the shell variable’s contents to expand ‘@include’
statements. The expanded program is placed in a second shell variable.

4. Run the expanded program with gawk and any other original command-line arguments
that the user supplied (such as the data file names).

This program uses shell variables extensively: for storing command-line arguments, the
text of the awk program that will expand the user’s program, for the user’s original program,
and for the expanded program. Doing so removes some potential problems that might arise
were we to use temporary files instead, at the cost of making the script somewhat more
complicated.

The initial part of the program turns on shell tracing if the first argument is ‘debug’.

The next part loops through all the command-line arguments. There are several cases
of interest:

-- This ends the arguments to igawk. Anything else should be passed on to the
user’s awk program without being evaluated.

-W This indicates that the next option is specific to gawk. To make argument
processing easier, the -W is appended to the front of the remaining arguments
and the loop continues. (This is an sh programming trick. Don’t worry about
it if you are not familiar with sh.)

-v, -F These are saved and passed on to gawk.

-f, --file, --file=, -Wfile=
The file name is appended to the shell variable program with an ‘@include’
statement. The expr utility is used to remove the leading option part of the
argument (e.g., ‘--file=’). (Typical sh usage would be to use the echo and sed

utilities to do this work. Unfortunately, some versions of echo evaluate escape
sequences in their arguments, possibly mangling the program text. Using expr

avoids this problem.)

--source, --source=, -Wsource=
The source text is appended to program.

--version, -Wversion
igawk prints its version number, runs ‘gawk --version’ to get the gawk version
information, and then exits.

If none of the -f, --file, -Wfile, --source, or -Wsource arguments are supplied, then
the first nonoption argument should be the awk program. If there are no command-line
arguments left, igawk prints an error message and exits. Otherwise, the first argument
is appended to program. In any case, after the arguments have been processed, program
contains the complete text of the original awk program.

The program is as follows:

280 GAWK: Effective AWK Programming

#! /bin/sh

igawk --- like gawk but do @include processing

if ["$1" = debug]

then

set -x

shift

fi

A literal newline, so that program text is formatted correctly

n=’

’

Initialize variables to empty

program=

opts=

while [$# -ne 0] # loop over arguments

do

case $1 in

--) shift

break ;;

-W) shift

The ${x?’message here’} construct prints a

diagnostic if $x is the null string

set -- -W"${@?’missing operand’}"

continue ;;

-[vF]) opts="$opts $1 ’${2?’missing operand’}’"

shift ;;

-[vF]*) opts="$opts ’$1’" ;;

-f) program="$program$n@include ${2?’missing operand’}"

shift ;;

-f*) f=$(expr "$1" : ’-f\(.*\)’)

program="$program$n@include $f" ;;

-[W-]file=*)

f=$(expr "$1" : ’-.file=\(.*\)’)

program="$program$n@include $f" ;;

-[W-]file)

program="$program$n@include ${2?’missing operand’}"

shift ;;

Chapter 13: Practical awk Programs 281

-[W-]source=*)

t=$(expr "$1" : ’-.source=\(.*\)’)

program="$program$n$t" ;;

-[W-]source)

program="$program$n${2?’missing operand’}"

shift ;;

-[W-]version)

echo igawk: version 3.0 1>&2

gawk --version

exit 0 ;;

-[W-]*) opts="$opts ’$1’" ;;

*) break ;;

esac

shift

done

if [-z "$program"]

then

program=${1?’missing program’}

shift

fi

At this point, ‘program’ has the program.

The awk program to process ‘@include’ directives is stored in the shell variable expand_
prog. Doing this keeps the shell script readable. The awk program reads through the user’s
program, one line at a time, using getline (see Section 4.9 [Explicit Input with getline],
page 67). The input file names and ‘@include’ statements are managed using a stack. As
each ‘@include’ is encountered, the current file name is “pushed” onto the stack and the file
named in the ‘@include’ directive becomes the current file name. As each file is finished,
the stack is “popped,” and the previous input file becomes the current input file again. The
process is started by making the original file the first one on the stack.

The pathto() function does the work of finding the full path to a file. It simulates
gawk’s behavior when searching the AWKPATH environment variable (see Section 2.5.1 [The
AWKPATH Environment Variable], page 32). If a file name has a ‘/’ in it, no path search is
done. Similarly, if the file name is "-", then that string is used as-is. Otherwise, the file
name is concatenated with the name of each directory in the path, and an attempt is made
to open the generated file name. The only way to test if a file can be read in awk is to go
ahead and try to read it with getline; this is what pathto() does.10 If the file can be
read, it is closed and the file name is returned:

10 On some very old versions of awk, the test ‘getline junk < t’ can loop forever if the file exists but is
empty. Caveat emptor.

282 GAWK: Effective AWK Programming

expand_prog=’

function pathto(file, i, t, junk)

{

if (index(file, "/") != 0)

return file

if (file == "-")

return file

for (i = 1; i <= ndirs; i++) {

t = (pathlist[i] "/" file)

if ((getline junk < t) > 0) {

found it

close(t)

return t

}

}

return ""

}

The main program is contained inside one BEGIN rule. The first thing it does is set up
the pathlist array that pathto() uses. After splitting the path on ‘:’, null elements are
replaced with ".", which represents the current directory:

BEGIN {

path = ENVIRON["AWKPATH"]

ndirs = split(path, pathlist, ":")

for (i = 1; i <= ndirs; i++) {

if (pathlist[i] == "")

pathlist[i] = "."

}

The stack is initialized with ARGV[1], which will be /dev/stdin. The main loop comes
next. Input lines are read in succession. Lines that do not start with ‘@include’ are printed
verbatim. If the line does start with ‘@include’, the file name is in $2. pathto() is called to
generate the full path. If it cannot, then the program prints an error message and continues.

The next thing to check is if the file is included already. The processed array is indexed
by the full file name of each included file and it tracks this information for us. If the file is
seen again, a warning message is printed. Otherwise, the new file name is pushed onto the
stack and processing continues.

Finally, when getline encounters the end of the input file, the file is closed and the
stack is popped. When stackptr is less than zero, the program is done:

stackptr = 0

input[stackptr] = ARGV[1] # ARGV[1] is first file

for (; stackptr >= 0; stackptr--) {

while ((getline < input[stackptr]) > 0) {

Chapter 13: Practical awk Programs 283

if (tolower($1) != "@include") {

print

continue

}

fpath = pathto($2)

if (fpath == "") {

printf("igawk:%s:%d: cannot find %s\n",

input[stackptr], FNR, $2) > "/dev/stderr"

continue

}

if (! (fpath in processed)) {

processed[fpath] = input[stackptr]

input[++stackptr] = fpath # push onto stack

} else

print $2, "included in", input[stackptr],

"already included in",

processed[fpath] > "/dev/stderr"

}

close(input[stackptr])

}

}’ # close quote ends ‘expand_prog’ variable

processed_program=$(gawk -- "$expand_prog" /dev/stdin << EOF

$program

EOF

)

The shell construct ‘command << marker’ is called a here document. Everything in the
shell script up to the marker is fed to command as input. The shell processes the contents
of the here document for variable and command substitution (and possibly other things as
well, depending upon the shell).

The shell construct ‘$(...)’ is called command substitution. The output of the com-
mand inside the parentheses is substituted into the command line. Because the result is
used in a variable assignment, it is saved as a single string, even if the results contain
whitespace.

The expanded program is saved in the variable processed_program. It’s done in these
steps:

1. Run gawk with the ‘@include’-processing program (the value of the expand_prog shell
variable) on standard input.

2. Standard input is the contents of the user’s program, from the shell variable program.
Its contents are fed to gawk via a here document.

3. The results of this processing are saved in the shell variable processed_program by
using command substitution.

The last step is to call gawk with the expanded program, along with the original options
and command-line arguments that the user supplied.

eval gawk $opts -- ’"$processed_program"’ ’"$@"’

284 GAWK: Effective AWK Programming

The eval command is a shell construct that reruns the shell’s parsing process. This
keeps things properly quoted.

This version of igawk represents my fifth version of this program. There are four key
simplifications that make the program work better:

• Using ‘@include’ even for the files named with -f makes building the initial collected
awk program much simpler; all the ‘@include’ processing can be done once.

• Not trying to save the line read with getline in the pathto() function when testing
for the file’s accessibility for use with the main program simplifies things considerably.

• Using a getline loop in the BEGIN rule does it all in one place. It is not necessary to
call out to a separate loop for processing nested ‘@include’ statements.

• Instead of saving the expanded program in a temporary file, putting it in a shell variable
avoids some potential security problems. This has the disadvantage that the script relies
upon more features of the sh language, making it harder to follow for those who aren’t
familiar with sh.

Also, this program illustrates that it is often worthwhile to combine sh and awk pro-
gramming together. You can usually accomplish quite a lot, without having to resort to
low-level programming in C or C++, and it is frequently easier to do certain kinds of string
and argument manipulation using the shell than it is in awk.

Finally, igawk shows that it is not always necessary to add new features to a program;
they can often be layered on top.

As an additional example of this, consider the idea of having two files in a directory in
the search path:

default.awk

This file contains a set of default library functions, such as getopt() and
assert().

site.awk This file contains library functions that are specific to a site or installation;
i.e., locally developed functions. Having a separate file allows default.awk to
change with new gawk releases, without requiring the system administrator to
update it each time by adding the local functions.

One user suggested that gawk be modified to automatically read these files upon startup.
Instead, it would be very simple to modify igawk to do this. Since igawk can process
nested ‘@include’ directives, default.awk could simply contain ‘@include’ statements for
the desired library functions.

13.3.10 Finding Anagrams From A Dictionary

An interesting programming challenge is to search for anagrams in a word list (such as
/usr/share/dict/words on many GNU/Linux systems). One word is an anagram of an-
other if both words contain the same letters (for example, “babbling” and “blabbing”).

An elegant algorithm is presented in Column 2, Problem C of Jon Bentley’s Programming
Pearls, second edition. The idea is to give words that are anagrams a common signature,
sort all the words together by their signature, and then print them. Dr. Bentley observes
that taking the letters in each word and sorting them produces that common signature.

The following program uses arrays of arrays to bring together words with the same
signature and array sorting to print the words in sorted order.

Chapter 13: Practical awk Programs 285

anagram.awk --- An implementation of the anagram finding algorithm

from Jon Bentley’s "Programming Pearls", 2nd edition.

Addison Wesley, 2000, ISBN 0-201-65788-0.

Column 2, Problem C, section 2.8, pp 18-20.

/’s$/ { next } # Skip possessives

The program starts with a header, and then a rule to skip possessives in the dictionary
file. The next rule builds up the data structure. The first dimension of the array is indexed
by the signature; the second dimension is the word itself:

{

key = word2key($1) # Build signature

data[key][$1] = $1 # Store word with signature

}

The word2key() function creates the signature. It splits the word apart into individual
letters, sorts the letters, and then joins them back together:

word2key --- split word apart into letters, sort, joining back together

function word2key(word, a, i, n, result)

{

n = split(word, a, "")

asort(a)

for (i = 1; i <= n; i++)

result = result a[i]

return result

}

Finally, the END rule traverses the array and prints out the anagram lists. It sends
the output to the system sort command, since otherwise the anagrams would appear in
arbitrary order:

END {

sort = "sort"

for (key in data) {

Sort words with same key

nwords = asorti(data[key], words)

if (nwords == 1)

continue

And print. Minor glitch: trailing space at end of each line

for (j = 1; j <= nwords; j++)

printf("%s ", words[j]) | sort

print "" | sort

}

close(sort)

}

286 GAWK: Effective AWK Programming

Here is some partial output when the program is run:

$ gawk -f anagram.awk /usr/share/dict/words | grep ’^b’

...

babbled blabbed

babbler blabber brabble

babblers blabbers brabbles

babbling blabbing

babbly blabby

babel bable

babels beslab

babery yabber

...

13.3.11 And Now For Something Completely Different

The following program was written by Davide Brini and is published on his website. It serves
as his signature in the Usenet group comp.lang.awk. He supplies the following copyright
terms:

Copyright c© 2008 Davide Brini

Copying and distribution of the code published in this page, with or without
modification, are permitted in any medium without royalty provided the copy-
right notice and this notice are preserved.

Here is the program:

awk ’BEGIN{O="~"~"~";o="=="=="==";o+=+o;x=O""O;while(X++<=x+o+o)c=c"%c";

printf c,(x-O)*(x-O),x*(x-o)-o,x*(x-O)+x-O-o,+x*(x-O)-x+o,X*(o*o+O)+x-O,

X*(X-x)-o*o,(x+X)*o*o+o,x*(X-x)-O-O,x-O+(O+o+X+x)*(o+O),X*X-X*(x-O)-x+O,

O+X*(o*(o+O)+O),+x+O+X*o,x*(x-o),(o+X+x)*o*o-(x-O-O),O+(X-x)*(X+O),x-O}’

We leave it to you to determine what the program does.

http://backreference.org/2011/02/03/obfuscated-awk/

Chapter 14: dgawk: The awk Debugger 287

14 dgawk: The awk Debugger

It would be nice if computer programs worked perfectly the first time they were run, but
in real life, this rarely happens for programs of any complexity. Thus, most programming
languages have facilities available for “debugging” programs, and now awk is no exception.

The dgawk debugger is purposely modeled after the GNU Debugger (GDB) command-
line debugger. If you are familiar with GDB, learning dgawk is easy.

14.1 Introduction to dgawk

This section introduces debugging in general and begins the discussion of debugging in
gawk.

14.1.1 Debugging In General

(If you have used debuggers in other languages, you may want to skip ahead to the next
section on the specific features of the awk debugger.)

Of course, a debugging program cannot remove bugs for you, since it has no way of
knowing what you or your users consider a “bug” and what is a “feature.” (Sometimes, we
humans have a hard time with this ourselves.) In that case, what can you expect from such
a tool? The answer to that depends on the language being debugged, but in general, you
can expect at least the following:

• The ability to watch a program execute its instructions one by one, giving you, the
programmer, the opportunity to think about what is happening on a time scale of
seconds, minutes, or hours, rather than the nanosecond time scale at which the code
usually runs.

• The opportunity to not only passively observe the operation of your program, but to
control it and try different paths of execution, without having to change your source
files.

• The chance to see the values of data in the program at any point in execution, and also
to change that data on the fly, to see how that affects what happens afterwards. (This
often includes the ability to look at internal data structures besides the variables you
actually defined in your code.)

• The ability to obtain additional information about your program’s state or even its
internal structure.

All of these tools provide a great amount of help in using your own skills and under-
standing of the goals of your program to find where it is going wrong (or, for that matter,
to better comprehend a perfectly functional program that you or someone else wrote).

14.1.2 Additional Debugging Concepts

Before diving in to the details, we need to introduce several important concepts that apply to
just about all debuggers, including dgawk. The following list defines terms used throughout
the rest of this chapter.

Stack Frame
Programs generally call functions during the course of their execution. One
function can call another, or a function can call itself (recursion). You can

http://www.gnu.org/software/gdb/

288 GAWK: Effective AWK Programming

view the chain of called functions (main program calls A, which calls B, which
calls C), as a stack of executing functions: the currently running function is the
topmost one on the stack, and when it finishes (returns), the next one down
then becomes the active function. Such a stack is termed a call stack.

For each function on the call stack, the system maintains a data area that
contains the function’s parameters, local variables, and return value, as well as
any other “bookkeeping” information needed to manage the call stack. This
data area is termed a stack frame.

gawk also follows this model, and dgawk gives you access to the call stack and
to each stack frame. You can see the call stack, as well as from where each
function on the stack was invoked. Commands that print the call stack print
information about each stack frame (as detailed later on).

Breakpoint
During debugging, you often wish to let the program run until it reaches a
certain point, and then continue execution from there one statement (or in-
struction) at a time. The way to do this is to set a breakpoint within the
program. A breakpoint is where the execution of the program should break off
(stop), so that you can take over control of the program’s execution. You can
add and remove as many breakpoints as you like.

Watchpoint
A watchpoint is similar to a breakpoint. The difference is that breakpoints are
oriented around the code: stop when a certain point in the code is reached. A
watchpoint, however, specifies that program execution should stop when a data
value is changed. This is useful, since sometimes it happens that a variable
receives an erroneous value, and it’s hard to track down where this happens
just by looking at the code. By using a watchpoint, you can stop whenever a
variable is assigned to, and usually find the errant code quite quickly.

14.1.3 Awk Debugging

Debugging an awk program has some specific aspects that are not shared with other pro-
gramming languages.

First of all, the fact that awk programs usually take input line-by-line from a file or files
and operate on those lines using specific rules makes it especially useful to organize viewing
the execution of the program in terms of these rules. As we will see, each awk rule is treated
almost like a function call, with its own specific block of instructions.

In addition, since awk is by design a very concise language, it is easy to lose sight of
everything that is going on “inside” each line of awk code. The debugger provides the
opportunity to look at the individual primitive instructions carried out by the higher-level
awk commands.

14.2 Sample dgawk session

In order to illustrate the use of dgawk, let’s look at a sample debugging session. We will use
the awk implementation of the POSIX uniq command described earlier (see Section 13.2.6
[Printing Nonduplicated Lines of Text], page 257) as our example.

Chapter 14: dgawk: The awk Debugger 289

14.2.1 dgawk Invocation

Starting dgawk is exactly like running awk. The file(s) containing the program and any
supporting code are given on the command line as arguments to one or more -f options.
(dgawk is not designed to debug command-line programs, only programs contained in files.)
In our case, we call dgawk like this:

$ dgawk -f getopt.awk -f join.awk -f uniq.awk inputfile

where both getopt.awk and uniq.awk are in $AWKPATH. (Experienced users of GDB or
similar debuggers should note that this syntax is slightly different from what they are used
to. With dgawk, the arguments for running the program are given in the command line to
the debugger rather than as part of the run command at the debugger prompt.)

Instead of immediately running the program on inputfile, as gawk would ordinarily do,
dgawk merely loads all the program source files, compiles them internally, and then gives
us a prompt:

dgawk>

from which we can issue commands to the debugger. At this point, no code has been
executed.

14.2.2 Finding The Bug

Let’s say that we are having a problem using (a faulty version of) uniq.awk in the “field-
skipping” mode, and it doesn’t seem to be catching lines which should be identical when
skipping the first field, such as:

awk is a wonderful program!

gawk is a wonderful program!

This could happen if we were thinking (C-like) of the fields in a record as being numbered
in a zero-based fashion, so instead of the lines:

clast = join(alast, fcount+1, n)

cline = join(aline, fcount+1, m)

we wrote:

clast = join(alast, fcount, n)

cline = join(aline, fcount, m)

The first thing we usually want to do when trying to investigate a problem like this is
to put a breakpoint in the program so that we can watch it at work and catch what it is
doing wrong. A reasonable spot for a breakpoint in uniq.awk is at the beginning of the
function are_equal(), which compares the current line with the previous one. To set the
breakpoint, use the b (breakpoint) command:

dgawk> b are_equal

a Breakpoint 1 set at file ‘awklib/eg/prog/uniq.awk’, line 64

The debugger tells us the file and line number where the breakpoint is. Now type ‘r’ or
‘run’ and the program runs until it hits the breakpoint for the first time:

dgawk> r

a Starting program:

a Stopping in Rule ...

a Breakpoint 1, are_equal(n, m, clast, cline, alast, aline)

290 GAWK: Effective AWK Programming

at ‘awklib/eg/prog/uniq.awk’:64

a 64 if (fcount == 0 && charcount == 0)

dgawk>

Now we can look at what’s going on inside our program. First of all, let’s see how we got
to where we are. At the prompt, we type ‘bt’ (short for “backtrace”), and dgawk responds
with a listing of the current stack frames:

dgawk> bt

a #0 are_equal(n, m, clast, cline, alast, aline)

at ‘awklib/eg/prog/uniq.awk’:69

a #1 in main() at ‘awklib/eg/prog/uniq.awk’:89

This tells us that are_equal() was called by the main program at line 89 of uniq.awk.
(This is not a big surprise, since this is the only call to are_equal() in the program, but
in more complex programs, knowing who called a function and with what parameters can
be the key to finding the source of the problem.)

Now that we’re in are_equal(), we can start looking at the values of some variables.
Let’s say we type ‘p n’ (p is short for “print”). We would expect to see the value of n, a
parameter to are_equal(). Actually, dgawk gives us:

dgawk> p n

a n = untyped variable

In this case, n is an uninitialized local variable, since the function was called without
arguments (see Section 6.4 [Function Calls], page 109).

A more useful variable to display might be the current record:

dgawk> p $0
a $0 = string ("gawk is a wonderful program!")

This might be a bit puzzling at first since this is the second line of our test input above.
Let’s look at NR:

dgawk> p NR

a NR = number (2)

So we can see that are_equal() was only called for the second record of the file. Of course,
this is because our program contained a rule for ‘NR == 1’:

NR == 1 {

last = $0

next

}

OK, let’s just check that that rule worked correctly:

dgawk> p last

a last = string ("awk is a wonderful program!")

Everything we have done so far has verified that the program has worked as planned, up
to and including the call to are_equal(), so the problem must be inside this function. To
investigate further, we must begin “stepping through” the lines of are_equal(). We start
by typing ‘n’ (for “next”):

dgawk> n

a 67 if (fcount > 0) {

Chapter 14: dgawk: The awk Debugger 291

This tells us that gawk is now ready to execute line 67, which decides whether to give
the lines the special “field skipping” treatment indicated by the -f command-line option.
(Notice that we skipped from where we were before at line 64 to here, since the condition
in line 64

if (fcount == 0 && charcount == 0)

was false.)

Continuing to step, we now get to the splitting of the current and last records:

dgawk> n

a 68 n = split(last, alast)

dgawk> n

a 69 m = split($0, aline)

At this point, we should be curious to see what our records were split into, so we try to
look:

dgawk> p n m alast aline

a n = number (5)

a m = number (5)

a alast = array, 5 elements

a aline = array, 5 elements

(The p command can take more than one argument, similar to awk’s print statement.)

This is kind of disappointing, though. All we found out is that there are five elements in
each of our arrays. Useful enough (we now know that none of the words were accidentally
left out), but what if we want to see inside the array?

The first choice would be to use subscripts:

dgawk> p alast[0]

a "0" not in array ‘alast’

Oops!

dgawk> p alast[1]

a alast["1"] = string ("awk")

This would be kind of slow for a 100-member array, though, so dgawk provides a shortcut
(reminiscent of another language not to be mentioned):

dgawk> p @alast

a alast["1"] = string ("awk")

a alast["2"] = string ("is")

a alast["3"] = string ("a")

a alast["4"] = string ("wonderful")

a alast["5"] = string ("program!")

It looks like we got this far OK. Let’s take another step or two:

dgawk> n

a 70 clast = join(alast, fcount, n)

dgawk> n

a 71 cline = join(aline, fcount, m)

Well, here we are at our error (sorry to spoil the suspense). What we had in mind was
to join the fields starting from the second one to make the virtual record to compare, and
if the first field was numbered zero, this would work. Let’s look at what we’ve got:

292 GAWK: Effective AWK Programming

dgawk> p cline clast

a cline = string ("gawk is a wonderful program!")

a clast = string ("awk is a wonderful program!")

Hey, those look pretty familiar! They’re just our original, unaltered, input records. A
little thinking (the human brain is still the best debugging tool), and we realize that we
were off by one!

We get out of dgawk:

dgawk> q

a The program is running. Exit anyway (y/n)? y

Then we get into an editor:

clast = join(alast, fcount+1, n)

cline = join(aline, fcount+1, m)

and problem solved!

14.3 Main dgawk Commands

The dgawk command set can be divided into the following categories:

• Breakpoint control

• Execution control

• Viewing and changing data

• Working with the stack

• Getting information

• Miscellaneous

Each of these are discussed in the following subsections. In the following descriptions,
commands which may be abbreviated show the abbreviation on a second description line.
A dgawk command name may also be truncated if that partial name is unambiguous. dgawk
has the built-in capability to automatically repeat the previous command when just hitting
Enter. This works for the commands list, next, nexti, step, stepi and continue

executed without any argument.

14.3.1 Control Of Breakpoints

As we saw above, the first thing you probably want to do in a debugging session is to get
your breakpoints set up, since otherwise your program will just run as if it was not under
the debugger. The commands for controlling breakpoints are:

break [[filename:]n | function] ["expression"]
b [[filename:]n | function] ["expression"]

Without any argument, set a breakpoint at the next instruction to be executed
in the selected stack frame. Arguments can be one of the following:

n Set a breakpoint at line number n in the current source file.

filename:n
Set a breakpoint at line number n in source file filename.

function Set a breakpoint at entry to (the first instruction of) function
function.

Chapter 14: dgawk: The awk Debugger 293

Each breakpoint is assigned a number which can be used to delete it from the
breakpoint list using the delete command.

With a breakpoint, you may also supply a condition. This is an awk expression
(enclosed in double quotes) that dgawk evaluates whenever the breakpoint is
reached. If the condition is true, then dgawk stops execution and prompts for
a command. Otherwise, dgawk continues executing the program.

clear [[filename:]n | function]
Without any argument, delete any breakpoint at the next instruction to be
executed in the selected stack frame. If the program stops at a breakpoint,
this deletes that breakpoint so that the program does not stop at that location
again. Arguments can be one of the following:

n Delete breakpoint(s) set at line number n in the current source file.

filename:n
Delete breakpoint(s) set at line number n in source file filename.

function Delete breakpoint(s) set at entry to function function.

condition n "expression"

Add a condition to existing breakpoint or watchpoint n. The condition is an
awk expression that dgawk evaluates whenever the breakpoint or watchpoint
is reached. If the condition is true, then dgawk stops execution and prompts
for a command. Otherwise, dgawk continues executing the program. If the
condition expression is not specified, any existing condition is removed; i.e., the
breakpoint or watchpoint is made unconditional.

delete [n1 n2 . . .] [n–m]
d [n1 n2 . . .] [n–m]

Delete specified breakpoints or a range of breakpoints. Deletes all defined break-
points if no argument is supplied.

disable [n1 n2 . . . | n–m]
Disable specified breakpoints or a range of breakpoints. Without any argument,
disables all breakpoints.

enable [del | once] [n1 n2 . . .] [n–m]
e [del | once] [n1 n2 . . .] [n–m]

Enable specified breakpoints or a range of breakpoints. Without any argu-
ment, enables all breakpoints. Optionally, you can specify how to enable the
breakpoint:

del Enable the breakpoint(s) temporarily, then delete it when the pro-
gram stops at the breakpoint.

once Enable the breakpoint(s) temporarily, then disable it when the pro-
gram stops at the breakpoint.

ignore n count
Ignore breakpoint number n the next count times it is hit.

294 GAWK: Effective AWK Programming

tbreak [[filename:]n | function]
t [[filename:]n | function]

Set a temporary breakpoint (enabled for only one stop). The arguments are
the same as for break.

14.3.2 Control of Execution

Now that your breakpoints are ready, you can start running the program and observing its
behavior. There are more commands for controlling execution of the program than we saw
in our earlier example:

commands [n]
silent

. . .
end Set a list of commands to be executed upon stopping at a breakpoint or watch-

point. n is the breakpoint or watchpoint number. Without a number, the last
one set is used. The actual commands follow, starting on the next line, and ter-
minated by the end command. If the command silent is in the list, the usual
messages about stopping at a breakpoint and the source line are not printed.
Any command in the list that resumes execution (e.g., continue) terminates
the list (an implicit end), and subsequent commands are ignored. For example:

dgawk> commands

> silent

> printf "A silent breakpoint; i = %d\n", i

> info locals

> set i = 10

> continue

> end

dgawk>

continue [count]
c [count] Resume program execution. If continued from a breakpoint and count is spec-

ified, ignores the breakpoint at that location the next count times before stop-
ping.

finish Execute until the selected stack frame returns. Print the returned value.

next [count]
n [count] Continue execution to the next source line, stepping over function calls. The

argument count controls how many times to repeat the action, as in step.

nexti [count]
ni [count] Execute one (or count) instruction(s), stepping over function calls.

return [value]
Cancel execution of a function call. If value (either a string or a number) is
specified, it is used as the function’s return value. If used in a frame other
than the innermost one (the currently executing function, i.e., frame number
0), discard all inner frames in addition to the selected one, and the caller of
that frame becomes the innermost frame.

Chapter 14: dgawk: The awk Debugger 295

run

r Start/restart execution of the program. When restarting, dgawk retains the cur-
rent breakpoints, watchpoints, command history, automatic display variables,
and debugger options.

step [count]
s [count] Continue execution until control reaches a different source line in the current

stack frame. step steps inside any function called within the line. If the
argument count is supplied, steps that many times before stopping, unless it
encounters a breakpoint or watchpoint.

stepi [count]
si [count] Execute one (or count) instruction(s), stepping inside function calls. (For il-

lustration of what is meant by an “instruction” in gawk, see the output shown
under dump in Section 14.3.6 [Miscellaneous Commands], page 298.)

until [[filename:]n | function]
u [[filename:]n | function]

Without any argument, continue execution until a line past the current line in
current stack frame is reached. With an argument, continue execution until the
specified location is reached, or the current stack frame returns.

14.3.3 Viewing and Changing Data

The commands for viewing and changing variables inside of gawk are:

display [var | $n]
Add variable var (or field $n) to the display list. The value of the variable or
field is displayed each time the program stops. Each variable added to the list
is identified by a unique number:

dgawk> display x

a 10: x = 1

displays the assigned item number, the variable name and its current value. If
the display variable refers to a function parameter, it is silently deleted from
the list as soon as the execution reaches a context where no such variable of the
given name exists. Without argument, display displays the current values of
items on the list.

eval "awk statements"

Evaluate awk statements in the context of the running program. You can
do anything that an awk program would do: assign values to variables, call
functions, and so on.

eval param, . . .
awk statements
end This form of eval is similar, but it allows you to define “local variables” that

exist in the context of the awk statements, instead of using variables or function
parameters defined by the program.

296 GAWK: Effective AWK Programming

print var1[, var2 . . .]
p var1[, var2 . . .]

Print the value of a gawk variable or field. Fields must be referenced by con-
stants:

dgawk> print $3

This prints the third field in the input record (if the specified field does not
exist, it prints ‘Null field’). A variable can be an array element, with the
subscripts being constant values. To print the contents of an array, prefix the
name of the array with the ‘@’ symbol:

gawk> print @a

This prints the indices and the corresponding values for all elements in the array
a.

printf format [, arg . . .]
Print formatted text. The format may include escape sequences, such as ‘\n’
(see Section 3.2 [Escape Sequences], page 38). No newline is printed unless one
is specified.

set var=value
Assign a constant (number or string) value to an awk variable or field. String
values must be enclosed between double quotes ("...").

You can also set special awk variables, such as FS, NF, NR, etc.

watch var | $n ["expression"]
w var | $n ["expression"]

Add variable var (or field $n) to the watch list. dgawk then stops whenever the
value of the variable or field changes. Each watched item is assigned a number
which can be used to delete it from the watch list using the unwatch command.

With a watchpoint, you may also supply a condition. This is an awk expression
(enclosed in double quotes) that dgawk evaluates whenever the watchpoint is
reached. If the condition is true, then dgawk stops execution and prompts for
a command. Otherwise, dgawk continues executing the program.

undisplay [n]
Remove item number n (or all items, if no argument) from the automatic display
list.

unwatch [n]
Remove item number n (or all items, if no argument) from the watch list.

14.3.4 Dealing With The Stack

Whenever you run a program which contains any function calls, gawk maintains a stack of
all of the function calls leading up to where the program is right now. You can see how you
got to where you are, and also move around in the stack to see what the state of things was
in the functions which called the one you are in. The commands for doing this are:

backtrace [count]
bt [count] Print a backtrace of all function calls (stack frames), or innermost count frames

if count > 0. Print the outermost count frames if count < 0. The backtrace

Chapter 14: dgawk: The awk Debugger 297

displays the name and arguments to each function, the source file name, and
the line number.

down [count]
Move count (default 1) frames down the stack toward the innermost frame.
Then select and print the frame.

frame [n]
f [n] Select and print (frame number, function and argument names, source file, and

the source line) stack frame n. Frame 0 is the currently executing, or innermost,
frame (function call), frame 1 is the frame that called the innermost one. The
highest numbered frame is the one for the main program.

up [count] Move count (default 1) frames up the stack toward the outermost frame. Then
select and print the frame.

14.3.5 Obtaining Information About The Program and The
Debugger State

Besides looking at the values of variables, there is often a need to get other sorts of infor-
mation about the state of your program and of the debugging environment itself. dgawk

has one command which provides this information, appropriately called info. info is used
with one of a number of arguments that tell it exactly what you want to know:

info what
i what The value for what should be one of the following:

args Arguments of the selected frame.

break List all currently set breakpoints.

display List all items in the automatic display list.

frame Description of the selected stack frame.

functions

List all function definitions including source file names and line
numbers.

locals Local variables of the selected frame.

source The name of the current source file. Each time the program stops,
the current source file is the file containing the current instruction.
When dgawk first starts, the current source file is the first file in-
cluded via the -f option. The ‘list filename:lineno’ command
can be used at any time to change the current source.

sources List all program sources.

variables

List all global variables.

watch List all items in the watch list.

Additional commands give you control over the debugger, the ability to save the de-
bugger’s state, and the ability to run debugger commands from a file. The commands
are:

298 GAWK: Effective AWK Programming

option [name[=value]]
o [name[=value]]

Without an argument, display the available debugger options and their current
values. ‘option name’ shows the current value of the named option. ‘option
name=value’ assigns a new value to the named option. The available options
are:

history_size

The maximum number of lines to keep in the history file ./.dgawk_
history. The default is 100.

listsize The number of lines that list prints. The default is 15.

outfile Send gawk output to a file; debugger output still goes to standard
output. An empty string ("") resets output to standard output.

prompt The debugger prompt. The default is ‘dgawk> ’.

save_history [on | off]
Save command history to file ./.dgawk_history. The default is
on.

save_options [on | off]
Save current options to file ./.dgawkrc upon exit. The default is
on. Options are read back in to the next session upon startup.

trace [on | off]
Turn instruction tracing on or off. The default is off.

save filename
Save the commands from the current session to the given file name, so that
they can be replayed using the source command.

source filename
Run command(s) from a file; an error in any command does not terminate
execution of subsequent commands. Comments (lines starting with ‘#’) are
allowed in a command file. Empty lines are ignored; they do not repeat the
last command. You can’t restart the program by having more than one run

command in the file. Also, the list of commands may include additional source
commands; however, dgawk will not source the same file more than once in order
to avoid infinite recursion.

In addition to, or instead of the source command, you can use the -R file

or --command=file command-line options to execute commands from a file
non-interactively (see Section 2.2 [Command-Line Options], page 25.

14.3.6 Miscellaneous Commands

There are a few more commands which do not fit into the previous categories, as follows:

dump [filename]
Dump bytecode of the program to standard output or to the file named in
filename. This prints a representation of the internal instructions which gawk

executes to implement the awk commands in a program. This can be very

Chapter 14: dgawk: The awk Debugger 299

enlightening, as the following partial dump of Davide Brini’s obfuscated code
(see Section 13.3.11 [And Now For Something Completely Different], page 286)
demonstrates:

dgawk> dump

a # BEGIN

a
a [2:0x89faef4] Op_rule : [in_rule = BEGIN] [source_file = brini.awk]

a [3:0x89fa428] Op_push_i : "~" [PERM|STRING|STRCUR]

a [3:0x89fa464] Op_push_i : "~" [PERM|STRING|STRCUR]

a [3:0x89fa450] Op_match :

a [3:0x89fa3ec] Op_store_var : O [do_reference = FALSE]

a [4:0x89fa48c] Op_push_i : "==" [PERM|STRING|STRCUR]

a [4:0x89fa4c8] Op_push_i : "==" [PERM|STRING|STRCUR]

a [4:0x89fa4b4] Op_equal :

a [4:0x89fa400] Op_store_var : o [do_reference = FALSE]

a [5:0x89fa4f0] Op_push : o

a [5:0x89fa4dc] Op_plus_i : 0 [PERM|NUMCUR|NUMBER]

a [5:0x89fa414] Op_push_lhs : o [do_reference = TRUE]

a [5:0x89fa4a0] Op_assign_plus :

a [:0x89fa478] Op_pop :

a [6:0x89fa540] Op_push : O

a [6:0x89fa554] Op_push_i : "" [PERM|STRING|STRCUR]

a [:0x89fa5a4] Op_no_op :

a [6:0x89fa590] Op_push : O

a [:0x89fa5b8] Op_concat : [expr_count = 3] [concat_flag = 0]

a [6:0x89fa518] Op_store_var : x [do_reference = FALSE]

a [7:0x89fa504] Op_push_loop : [target_continue = 0x89fa568] [tar-

get_break = 0x89fa680]

a [7:0x89fa568] Op_push_lhs : X [do_reference = TRUE]

a [7:0x89fa52c] Op_postincrement :

a [7:0x89fa5e0] Op_push : x

a [7:0x89fa61c] Op_push : o

a [7:0x89fa5f4] Op_plus :

a [7:0x89fa644] Op_push : o

a [7:0x89fa630] Op_plus :

a [7:0x89fa5cc] Op_leq :

a [:0x89fa57c] Op_jmp_false : [target_jmp = 0x89fa680]

a [7:0x89fa694] Op_push_i : "%c" [PERM|STRING|STRCUR]

a [:0x89fa6d0] Op_no_op :

a [7:0x89fa608] Op_assign_concat : c

a [:0x89fa6a8] Op_jmp : [target_jmp = 0x89fa568]

a [:0x89fa680] Op_pop_loop :

a
...

a
a [8:0x89fa658] Op_K_printf : [expr_count = 17] [redir_type = ""]

a [:0x89fa374] Op_no_op :

a [:0x89fa3d8] Op_atexit :

a [:0x89fa6bc] Op_stop :

a [:0x89fa39c] Op_no_op :

a [:0x89fa3b0] Op_after_beginfile :

a [:0x89fa388] Op_no_op :

a [:0x89fa3c4] Op_after_endfile :

dgawk>

300 GAWK: Effective AWK Programming

help

h Print a list of all of the dgawk commands with a short summary of their usage.
‘help command’ prints the information about the command command.

list [- | + | n | filename:n | n–m | function]
l [- | + | n | filename:n | n–m | function]

Print the specified lines (default 15) from the current source file or the file
named filename. The possible arguments to list are as follows:

- Print lines before the lines last printed.

+ Print lines after the lines last printed. list without any argument
does the same thing.

n Print lines centered around line number n.

n–m Print lines from n to m.

filename:n
Print lines centered around line number n in source file filename.
This command may change the current source file.

function Print lines centered around beginning of the function function. This
command may change the current source file.

quit

q Exit the debugger. Debugging is great fun, but sometimes we all have to tend
to other obligations in life, and sometimes we find the bug, and are free to go
on to the next one! As we saw above, if you are running a program, dgawk
warns you if you accidentally type ‘q’ or ‘quit’, to make sure you really want
to quit.

trace on | off

Turn on or off a continuous printing of instructions which are about to be
executed, along with printing the awk line which they implement. The default
is off.

It is to be hoped that most of the “opcodes” in these instructions are fairly
self-explanatory, and using stepi and nexti while trace is on will make them
into familiar friends.

14.4 Readline Support

If dgawk is compiled with the readline library, you can take advantage of that library’s
command completion and history expansion features. The following types of completion
are available:

Command completion
Command names.

Source file name completion
Source file names. Relevant commands are break, clear, list, tbreak, and
until.

Chapter 14: dgawk: The awk Debugger 301

Argument completion
Non-numeric arguments to a command. Relevant commands are enable and
info.

Variable name completion
Global variable names, and function arguments in the current context if the
program is running. Relevant commands are display, print, set, and watch.

14.5 Limitations and Future Plans

We hope you find dgawk useful and enjoyable to work with, but as with any program,
especially in its early releases, it still has some limitations. A few which are worth being
aware of are:

• At this point, dgawk does not give a detailed explanation of what you did wrong when
you type in something it doesn’t like. Rather, it just responds ‘syntax error’. When
you do figure out what your mistake was, though, you’ll feel like a real guru.

• If you perused the dump of opcodes in Section 14.3.6 [Miscellaneous Commands],
page 298, (or if you are already familiar with gawk internals), you will realize that
much of the internal manipulation of data in gawk, as in many interpreters, is done
on a stack. Op_push, Op_pop, etc., are the “bread and butter” of most gawk code.
Unfortunately, as of now, dgawk does not allow you to examine the stack’s contents.

That is, the intermediate results of expression evaluation are on the stack, but cannot
be printed. Rather, only variables which are defined in the program can be printed. Of
course, a workaround for this is to use more explicit variables at the debugging stage
and then change back to obscure, perhaps more optimal code later.

• There is no way to look “inside” the process of compiling regular expressions to
see if you got it right. As an awk programmer, you are expected to know what
/[^[:alnum:][:blank:]]/ means.

• dgawk is designed to be used by running a program (with all its parameters) on the
command line, as described in Section 14.2.1 [dgawk Invocation], page 289. There is no
way (as of now) to attach or “break in” to a running program. This seems reasonable
for a language which is used mainly for quickly executing, short programs.

• dgawk only accepts source supplied with the -f option.

Look forward to a future release when these and other missing features may be added,
and of course feel free to try to add them yourself!

Appendix A: The Evolution of the awk Language 303

Appendix A The Evolution of the awk Language

This book describes the GNU implementation of awk, which follows the POSIX specification.
Many long-time awk users learned awk programming with the original awk implementation
in Version 7 Unix. (This implementation was the basis for awk in Berkeley Unix, through
4.3-Reno. Subsequent versions of Berkeley Unix, and some systems derived from 4.4BSD-
Lite, use various versions of gawk for their awk.) This chapter briefly describes the evolution
of the awk language, with cross-references to other parts of the book where you can find
more information.

A.1 Major Changes Between V7 and SVR3.1

The awk language evolved considerably between the release of Version 7 Unix (1978) and
the new version that was first made generally available in System V Release 3.1 (1987).
This section summarizes the changes, with cross-references to further details:

• The requirement for ‘;’ to separate rules on a line (see Section 1.6 [awk Statements
Versus Lines], page 21).

• User-defined functions and the return statement (see Section 9.2 [User-Defined Func-
tions], page 175).

• The delete statement (see Section 8.2 [The delete Statement], page 144).

• The do-while statement (see Section 7.4.3 [The do-while Statement], page 122).

• The built-in functions atan2(), cos(), sin(), rand(), and srand() (see Section 9.1.2
[Numeric Functions], page 151).

• The built-in functions gsub(), sub(), and match() (see Section 9.1.3 [String-
Manipulation Functions], page 153).

• The built-in functions close() and system() (see Section 9.1.4 [Input/Output Func-
tions], page 165).

• The ARGC, ARGV, FNR, RLENGTH, RSTART, and SUBSEP built-in variables (see Section 7.5
[Built-in Variables], page 128).

• Assignable $0 (see Section 4.4 [Changing the Contents of a Field], page 54).

• The conditional expression using the ternary operator ‘?:’ (see Section 6.3.4 [Condi-
tional Expressions], page 109).

• The expression ‘index-variable in array’ outside of for statements (see Section 8.1.2
[Referring to an Array Element], page 138).

• The exponentiation operator ‘^’ (see Section 6.2.1 [Arithmetic Operators], page 97)
and its assignment operator form ‘^=’ (see Section 6.2.3 [Assignment Expressions],
page 100).

• C-compatible operator precedence, which breaks some old awk programs (see Section 6.5
[Operator Precedence (How Operators Nest)], page 111).

• Regexps as the value of FS (see Section 4.5 [Specifying How Fields Are Separated],
page 56) and as the third argument to the split() function (see Section 9.1.3 [String-
Manipulation Functions], page 153), rather than using only the first character of FS.

• Dynamic regexps as operands of the ‘~’ and ‘!~’ operators (see Section 3.1 [How to Use
Regular Expressions], page 37).

304 GAWK: Effective AWK Programming

• The escape sequences ‘\b’, ‘\f’, and ‘\r’ (see Section 3.2 [Escape Sequences], page 38).
(Some vendors have updated their old versions of awk to recognize ‘\b’, ‘\f’, and ‘\r’,
but this is not something you can rely on.)

• Redirection of input for the getline function (see Section 4.9 [Explicit Input with
getline], page 67).

• Multiple BEGIN and END rules (see Section 7.1.4 [The BEGIN and END Special Patterns],
page 116).

• Multidimensional arrays (see Section 8.5 [Multidimensional Arrays], page 146).

A.2 Changes Between SVR3.1 and SVR4

The System V Release 4 (1989) version of Unix awk added these features (some of which
originated in gawk):

• The ENVIRON array (see Section 7.5 [Built-in Variables], page 128).

• Multiple -f options on the command line (see Section 2.2 [Command-Line Options],
page 25).

• The -v option for assigning variables before program execution begins (see Section 2.2
[Command-Line Options], page 25).

• The -- option for terminating command-line options.

• The ‘\a’, ‘\v’, and ‘\x’ escape sequences (see Section 3.2 [Escape Sequences], page 38).

• A defined return value for the srand() built-in function (see Section 9.1.2 [Numeric
Functions], page 151).

• The toupper() and tolower() built-in string functions for case translation (see
Section 9.1.3 [String-Manipulation Functions], page 153).

• A cleaner specification for the ‘%c’ format-control letter in the printf function (see
Section 5.5.2 [Format-Control Letters], page 78).

• The ability to dynamically pass the field width and precision ("%*.*d") in the argument
list of the printf function (see Section 5.5.2 [Format-Control Letters], page 78).

• The use of regexp constants, such as /foo/, as expressions, where they are equivalent
to using the matching operator, as in ‘$0 ~ /foo/’ (see Section 6.1.2 [Using Regular
Expression Constants], page 93).

• Processing of escape sequences inside command-line variable assignments (see
Section 6.1.3.2 [Assigning Variables on the Command Line], page 94).

A.3 Changes Between SVR4 and POSIX awk

The POSIX Command Language and Utilities standard for awk (1992) introduced the fol-
lowing changes into the language:

• The use of -W for implementation-specific options (see Section 2.2 [Command-Line
Options], page 25).

• The use of CONVFMT for controlling the conversion of numbers to strings (see
Section 6.1.4 [Conversion of Strings and Numbers], page 95).

• The concept of a numeric string and tighter comparison rules to go with it (see
Section 6.3.2 [Variable Typing and Comparison Expressions], page 104).

Appendix A: The Evolution of the awk Language 305

• The use of built-in variables as function parameter names is forbidden (see Section 9.2.1
[Function Definition Syntax], page 175.

• More complete documentation of many of the previously undocumented features of the
language.

See Section A.6 [Common Extensions Summary], page 307, for a list of common exten-
sions not permitted by the POSIX standard.

The 2008 POSIX standard can be found online at http: / /www .opengroup .org /

onlinepubs/9699919799/.

A.4 Extensions in Brian Kernighan’s awk

Brian Kernighan has made his version available via his home page (see Section B.5 [Other
Freely Available awk Implementations], page 325).

This section describes common extensions that originally appeared in his version of awk.

• The ‘**’ and ‘**=’ operators (see Section 6.2.1 [Arithmetic Operators], page 97 and
Section 6.2.3 [Assignment Expressions], page 100).

• The use of func as an abbreviation for function (see Section 9.2.1 [Function Definition
Syntax], page 175).

• The fflush() built-in function for flushing buffered output (see Section 9.1.4 [In-
put/Output Functions], page 165). As of December 2012, this function is now stan-
dardized by POSIX.

See Section A.6 [Common Extensions Summary], page 307, for a full list of the extensions
available in his awk.

A.5 Extensions in gawk Not in POSIX awk

The GNU implementation, gawk, adds a large number of features. They can all be dis-
abled with either the --traditional or --posix options (see Section 2.2 [Command-Line
Options], page 25).

A number of features have come and gone over the years. This section summarizes the
additional features over POSIX awk that are in the current version of gawk.

• Additional built-in variables:

− The ARGIND BINMODE, ERRNO, FIELDWIDTHS, FPAT, IGNORECASE, LINT, PROCINFO,
RT, and TEXTDOMAIN variables (see Section 7.5 [Built-in Variables], page 128).

• Special files in I/O redirections:

− The /dev/stdin, /dev/stdout, /dev/stderr and /dev/fd/N special file names
(see Section 5.7 [Special File Names in gawk], page 86).

− The /inet, /inet4, and ‘/inet6’ special files for TCP/IP networking using ‘|&’
to specify which version of the IP protocol to use. (see Section 11.4 [Using gawk

for Network Programming], page 207).

• Changes and/or additions to the language:

− The ‘\x’ escape sequence (see Section 3.2 [Escape Sequences], page 38).

− Full support for both POSIX and GNU regexps (see Chapter 3 [Regular Expres-
sions], page 37).

http://www.opengroup.org/onlinepubs/9699919799/
http://www.opengroup.org/onlinepubs/9699919799/

306 GAWK: Effective AWK Programming

− The ability for FS and for the third argument to split() to be null strings (see
Section 4.5.3 [Making Each Character a Separate Field], page 58).

− The ability for RS to be a regexp (see Section 4.1 [How Input Is Split into Records],
page 49).

− The ability to use octal and hexadecimal constants in awk program source code
(see Section 6.1.1.2 [Octal and Hexadecimal Numbers], page 91).

− The ‘|&’ operator for two-way I/O to a coprocess (see Section 11.3 [Two-Way
Communications with Another Process], page 205).

− Indirect function calls (see Section 9.3 [Indirect Function Calls], page 183).

− Directories on the command line produce a warning and are skipped (see
Section 4.10 [Directories On The Command Line], page 73).

• New keywords:

− The BEGINFILE and ENDFILE special patterns. (see Section 7.1.5 [The BEGINFILE
and ENDFILE Special Patterns], page 117).

− The ability to delete all of an array at once with ‘delete array’ (see Section 8.2
[The delete Statement], page 144).

− The nextfile statement (see Section 7.4.9 [The nextfile Statement], page 127).

− The switch statement (see Section 7.4.5 [The switch Statement], page 123).

• Changes to standard awk functions:

− The optional second argument to close() that allows closing one end of a two-
way pipe to a coprocess (see Section 11.3 [Two-Way Communications with Another
Process], page 205).

− POSIX compliance for gsub() and sub().

− The length() function accepts an array argument and returns the number of
elements in the array (see Section 9.1.3 [String-Manipulation Functions], page 153).

− The optional third argument to the match() function for capturing text-matching
subexpressions within a regexp (see Section 9.1.3 [String-Manipulation Functions],
page 153).

− Positional specifiers in printf formats for making translations easier (see
Section 10.4.2 [Rearranging printf Arguments], page 193).

− The split() function’s additional optional fourth argument which is an array
to hold the text of the field separators. (see Section 9.1.3 [String-Manipulation
Functions], page 153).

• Additional functions only in gawk:

− The and(), compl(), lshift(), or(), rshift(), and xor() functions for bit
manipulation (see Section 9.1.6 [Bit-Manipulation Functions], page 172).

− The asort() and asorti() functions for sorting arrays (see Section 11.2 [Con-
trolling Array Traversal and Array Sorting], page 200).

− The bindtextdomain(), dcgettext() and dcngettext() functions for interna-
tionalization (see Section 10.3 [Internationalizing awk Programs], page 191).

− The extension() built-in function and the ability to add new functions dynami-
cally (see Section C.3 [Adding New Built-in Functions to gawk], page 332).

Appendix A: The Evolution of the awk Language 307

− The fflush() function from Brian Kernighan’s version of awk (see Section 9.1.4
[Input/Output Functions], page 165).

− The gensub(), patsplit(), and strtonum() functions for more powerful text
manipulation (see Section 9.1.3 [String-Manipulation Functions], page 153).

− The mktime(), systime(), and strftime() functions for working with time-
stamps (see Section 9.1.5 [Time Functions], page 168).

• Changes and/or additions in the command-line options:

− The AWKPATH environment variable for specifying a path search for the -f

command-line option (see Section 2.2 [Command-Line Options], page 25).

− The ability to use GNU-style long-named options that start with -- and the
--characters-as-bytes, --compat, --dump-variables, --exec, --gen-pot, --
lint, --lint-old, --non-decimal-data, --posix, --profile, --re-interval,
--sandbox, --source, --traditional, and --use-lc-numeric options (see
Section 2.2 [Command-Line Options], page 25).

• Support for the following obsolete systems was removed from the code and the docu-
mentation for gawk version 4.0:

− Amiga

− Atari

− BeOS

− Cray

− MIPS RiscOS

− MS-DOS with the Microsoft Compiler

− MS-Windows with the Microsoft Compiler

− NeXT

− SunOS 3.x, Sun 386 (Road Runner)

− Tandem (non-POSIX)

− Prestandard VAX C compiler for VAX/VMS

A.6 Common Extensions Summary

This section summarizes the common extensions supported by gawk, Brian Kernighan’s
awk, and mawk, the three most widely-used freely available versions of awk (see Section B.5
[Other Freely Available awk Implementations], page 325).

Feature BWK Awk Mawk GNU Awk
‘\x’ Escape sequence X X X
RS as regexp X X
FS as null string X X X
/dev/stdin special file X X X
/dev/stdout special file X X X
/dev/stderr special file X X X
** and **= operators X X
func keyword X X

308 GAWK: Effective AWK Programming

nextfile statement X X X
delete without subscript X X X
length() of an array X X
BINMODE variable X X

A.7 Regexp Ranges and Locales: A Long Sad Story

This section describes the confusing history of ranges within regular expressions and their
interactions with locales, and how this affected different versions of gawk.

The original Unix tools that worked with regular expressions defined character ranges
(such as ‘[a-z]’) to match any character between the first character in the range and the
last character in the range, inclusive. Ordering was based on the numeric value of each
character in the machine’s native character set. Thus, on ASCII-based systems, [a-z]
matched all the lowercase letters, and only the lowercase letters, since the numeric values
for the letters from ‘a’ through ‘z’ were contiguous. (On an EBCDIC system, the range
‘[a-z]’ includes additional, non-alphabetic characters as well.)

Almost all introductory Unix literature explained range expressions as working in this
fashion, and in particular, would teach that the “correct” way to match lowercase letters
was with ‘[a-z]’, and that ‘[A-Z]’ was the “correct” way to match uppercase letters. And
indeed, this was true.1

The 1993 POSIX standard introduced the idea of locales (see Section 6.6 [Where You Are
Makes A Difference], page 112). Since many locales include other letters besides the plain
twenty-six letters of the American English alphabet, the POSIX standard added character
classes (see Section 3.4 [Using Bracket Expressions], page 42) as a way to match different
kinds of characters besides the traditional ones in the ASCII character set.

However, the standard changed the interpretation of range expressions. In the "C" and
"POSIX" locales, a range expression like ‘[a-dx-z]’ is still equivalent to ‘[abcdxyz]’, as in
ASCII. But outside those locales, the ordering was defined to be based on collation order.

In many locales, ‘A’ and ‘a’ are both less than ‘B’. In other words, these locales sort
characters in dictionary order, and ‘[a-dx-z]’ is typically not equivalent to ‘[abcdxyz]’;
instead it might be equivalent to ‘[ABCXYabcdxyz]’, for example.

This point needs to be emphasized: Much literature teaches that you should use ‘[a-z]’
to match a lowercase character. But on systems with non-ASCII locales, this also matched
all of the uppercase characters except ‘A’ or ‘Z’! This was a continuous cause of confusion,
even well into the twenty-first century.

To demonstrate these issues, the following example uses the sub() function, which does
text replacement (see Section 9.1.3 [String-Manipulation Functions], page 153). Here, the
intent is to remove trailing uppercase characters:

$ echo something1234abc | gawk-3.1.8 ’{ sub("[A-Z]*$", ""); print }’

a something1234a

This output is unexpected, since the ‘bc’ at the end of ‘something1234abc’ should not
normally match ‘[A-Z]*’. This result is due to the locale setting (and thus you may not
see it on your system).

1 And Life was good.

Appendix A: The Evolution of the awk Language 309

Similar considerations apply to other ranges. For example, ‘["-/]’ is perfectly valid in
ASCII, but is not valid in many Unicode locales, such as ‘en_US.UTF-8’.

Early versions of gawk used regexp matching code that was not locale aware, so ranges
had their traditional interpretation.

When gawk switched to using locale-aware regexp matchers, the problems began; espe-
cially as both GNU/Linux and commercial Unix vendors started implementing non-ASCII
locales, and making them the default. Perhaps the most frequently asked question became
something like “why does [A-Z] match lowercase letters?!?”

This situation existed for close to 10 years, if not more, and the gawk maintainer grew
weary of trying to explain that gawk was being nicely standards-compliant, and that the
issue was in the user’s locale. During the development of version 4.0, he modified gawk

to always treat ranges in the original, pre-POSIX fashion, unless --posix was used (see
Section 2.2 [Command-Line Options], page 25).2

Fortunately, shortly before the final release of gawk 4.0, the maintainer learned that the
2008 standard had changed the definition of ranges, such that outside the "C" and "POSIX"

locales, the meaning of range expressions was undefined.3

By using this lovely technical term, the standard gives license to implementors to im-
plement ranges in whatever way they choose. The gawk maintainer chose to apply the
pre-POSIX meaning in all cases: the default regexp matching; with --traditional, and
with --posix; in all cases, gawk remains POSIX compliant.

A.8 Major Contributors to gawk

Always give credit where credit is due.
Anonymous

This section names the major contributors to gawk and/or this book, in approximate
chronological order:

• Dr. Alfred V. Aho, Dr. Peter J. Weinberger, and Dr. Brian W. Kernighan, all of Bell
Laboratories, designed and implemented Unix awk, from which gawk gets the majority
of its feature set.

• Paul Rubin did the initial design and implementation in 1986, and wrote the first draft
(around 40 pages) of this book.

• Jay Fenlason finished the initial implementation.

• Diane Close revised the first draft of this book, bringing it to around 90 pages.

• Richard Stallman helped finish the implementation and the initial draft of this book.
He is also the founder of the FSF and the GNU project.

• John Woods contributed parts of the code (mostly fixes) in the initial version of gawk.

• In 1988, David Trueman took over primary maintenance of gawk, making it compatible
with “new” awk, and greatly improving its performance.

2 And thus was born the Campain for Rational Range Interpretation (or RRI). A number of GNU tools,
such as grep and sed, have either implemented this change, or will soon. Thanks to Karl Berry for
coining the phrase “Rational Range Interpretation.”

3 See the standard and its rationale.

http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap09.html#tag_09_03_05
http://pubs.opengroup.org/onlinepubs/9699919799/xrat/V4_xbd_chap09.html#tag_21_09_03_05

310 GAWK: Effective AWK Programming

• Conrad Kwok, Scott Garfinkle, and Kent Williams did the initial ports to MS-DOS
with various versions of MSC.

• Pat Rankin provided the VMS port and its documentation.

• Hal Peterson provided help in porting gawk to Cray systems. (This is no longer sup-
ported.)

• Kai Uwe Rommel provided the initial port to OS/2 and its documentation.

• Michal Jaegermann provided the port to Atari systems and its documentation. (This
port is no longer supported.) He continues to provide portability checking with DEC
Alpha systems, and has done a lot of work to make sure gawk works on non-32-bit
systems.

• Fred Fish provided the port to Amiga systems and its documentation. (With Fred’s
sad passing, this is no longer supported.)

• Scott Deifik currently maintains the MS-DOS port using DJGPP.

• Eli Zaretskii currently maintains the MS-Windows port using MinGW.

• Juan Grigera provided a port to Windows32 systems. (This is no longer supported.)

• For many years, Dr. Darrel Hankerson acted as coordinator for the various ports to dif-
ferent PC platforms and created binary distributions for various PC operating systems.
He was also instrumental in keeping the documentation up to date for the various PC
platforms.

• Christos Zoulas provided the extension() built-in function for dynamically adding
new modules.

• Jürgen Kahrs contributed the initial version of the TCP/IP networking code and doc-
umentation, and motivated the inclusion of the ‘|&’ operator.

• Stephen Davies provided the initial port to Tandem systems and its documentation.
(However, this is no longer supported.) He was also instrumental in the initial work to
integrate the byte-code internals into the gawk code base.

• Matthew Woehlke provided improvements for Tandem’s POSIX-compliant systems.

• Martin Brown provided the port to BeOS and its documentation. (This is no longer
supported.)

• Arno Peters did the initial work to convert gawk to use GNU Automake and GNU
gettext.

• Alan J. Broder provided the initial version of the asort() function as well as the code
for the optional third argument to the match() function.

• Andreas Buening updated the gawk port for OS/2.

• Isamu Hasegawa, of IBM in Japan, contributed support for multibyte characters.

• Michael Benzinger contributed the initial code for switch statements.

• Patrick T.J. McPhee contributed the code for dynamic loading in Windows32 environ-
ments. (This is no longer supported)

• John Haque reworked the gawk internals to use a byte-code engine, providing the dgawk
debugger for awk programs.

• Efraim Yawitz contributed the original text for Chapter 14 [dgawk: The awk Debugger],
page 287.

Appendix A: The Evolution of the awk Language 311

• Arnold Robbins has been working on gawk since 1988, at first helping David Trueman,
and as the primary maintainer since around 1994.

Appendix B: Installing gawk 313

Appendix B Installing gawk

This appendix provides instructions for installing gawk on the various platforms that are
supported by the developers. The primary developer supports GNU/Linux (and Unix),
whereas the other ports are contributed. See Section B.4 [Reporting Problems and Bugs],
page 324, for the electronic mail addresses of the people who did the respective ports.

B.1 The gawk Distribution

This section describes how to get the gawk distribution, how to extract it, and then what
is in the various files and subdirectories.

B.1.1 Getting the gawk Distribution

There are three ways to get GNU software:

• Copy it from someone else who already has it.

• Retrieve gawk from the Internet host ftp.gnu.org, in the directory /gnu/gawk. Both
anonymous ftp and http access are supported. If you have the wget program, you can
use a command like the following:

wget http://ftp.gnu.org/gnu/gawk/gawk-4.0.2.tar.gz

The GNU software archive is mirrored around the world. The up-to-date list of mirror
sites is available from the main FSF web site. Try to use one of the mirrors; they will be
less busy, and you can usually find one closer to your site.

B.1.2 Extracting the Distribution

gawk is distributed as several tar files compressed with different compression programs:
gzip, bzip2, and xz. For simplicity, the rest of these instructions assume you are using the
one compressed with the GNU Zip program, gzip.

Once you have the distribution (for example, gawk-4.0.2.tar.gz), use gzip to expand
the file and then use tar to extract it. You can use the following pipeline to produce the
gawk distribution:

Under System V, add ’o’ to the tar options

gzip -d -c gawk-4.0.2.tar.gz | tar -xvpf -

On a system with GNU tar, you can let tar do the decompression for you:

tar -xvpzf gawk-4.0.2.tar.gz

Extracting the archive creates a directory named gawk-4.0.2 in the current directory.

The distribution file name is of the form gawk-V.R.P.tar.gz. The V represents the
major version of gawk, the R represents the current release of version V, and the P represents
a patch level, meaning that minor bugs have been fixed in the release. The current patch
level is 2, but when retrieving distributions, you should get the version with the highest
version, release, and patch level. (Note, however, that patch levels greater than or equal to
70 denote “beta” or nonproduction software; you might not want to retrieve such a version
unless you don’t mind experimenting.) If you are not on a Unix or GNU/Linux system,
you need to make other arrangements for getting and extracting the gawk distribution. You
should consult a local expert.

http://www.gnu.org/order/ftp.html

314 GAWK: Effective AWK Programming

B.1.3 Contents of the gawk Distribution

The gawk distribution has a number of C source files, documentation files, subdirectories,
and files related to the configuration process (see Section B.2 [Compiling and Installing
gawk on Unix-like Systems], page 316), as well as several subdirectories related to different
non-Unix operating systems:

Various ‘.c’, ‘.y’, and ‘.h’ files
The actual gawk source code.

README

README_d/README.*

Descriptive files: README for gawk under Unix and the rest for the various
hardware and software combinations.

INSTALL A file providing an overview of the configuration and installation process.

ChangeLog

A detailed list of source code changes as bugs are fixed or improvements made.

ChangeLog.0

An older list of source code changes.

NEWS A list of changes to gawk since the last release or patch.

NEWS.0 An older list of changes to gawk.

COPYING The GNU General Public License.

FUTURES A brief list of features and changes being contemplated for future releases, with
some indication of the time frame for the feature, based on its difficulty.

LIMITATIONS

A list of those factors that limit gawk’s performance. Most of these depend on
the hardware or operating system software and are not limits in gawk itself.

POSIX.STD

A description of behaviors in the POSIX standard for awk which are left unde-
fined, or where gawk may not comply fully, as well as a list of things that the
POSIX standard should describe but does not.

doc/awkforai.txt

Pointers to the original draft of a short article describing why gawk is a good
language for Artificial Intelligence (AI) programming.

doc/bc_notes

A brief description of gawk’s “byte code” internals.

Appendix B: Installing gawk 315

doc/README.card

doc/ad.block

doc/awkcard.in

doc/cardfonts

doc/colors

doc/macros

doc/no.colors

doc/setter.outline

The troff source for a five-color awk reference card. A modern version of troff
such as GNU troff (groff) is needed to produce the color version. See the file
README.card for instructions if you have an older troff.

doc/gawk.1

The troff source for a manual page describing gawk. This is distributed for
the convenience of Unix users.

doc/gawk.texi

The Texinfo source file for this book. It should be processed with TEX (via
texi2dvi or texi2pdf) to produce a printed document, and with makeinfo to
produce an Info or HTML file.

doc/gawk.info

The generated Info file for this book.

doc/gawkinet.texi

The Texinfo source file for TCP/IP Internetworking with gawk. It should be
processed with TEX (via texi2dvi or texi2pdf) to produce a printed document
and with makeinfo to produce an Info or HTML file.

doc/gawkinet.info

The generated Info file for TCP/IP Internetworking with gawk.

doc/igawk.1

The troff source for a manual page describing the igawk program presented
in Section 13.3.9 [An Easy Way to Use Library Functions], page 278.

doc/Makefile.in

The input file used during the configuration process to generate the actual
Makefile for creating the documentation.

Makefile.am

*/Makefile.am

Files used by the GNU automake software for generating the Makefile.in files
used by autoconf and configure.

316 GAWK: Effective AWK Programming

Makefile.in

aclocal.m4

configh.in

configure.ac

configure

custom.h

missing_d/*

m4/* These files and subdirectories are used when configuring gawk for various Unix
systems. They are explained in Section B.2 [Compiling and Installing gawk on
Unix-like Systems], page 316.

po/* The po library contains message translations.

awklib/extract.awk

awklib/Makefile.am

awklib/Makefile.in

awklib/eg/*

The awklib directory contains a copy of extract.awk (see Section 13.3.7 [Ex-
tracting Programs from Texinfo Source Files], page 273), which can be used to
extract the sample programs from the Texinfo source file for this book. It also
contains a Makefile.in file, which configure uses to generate a Makefile.
Makefile.am is used by GNU Automake to create Makefile.in. The library
functions from Chapter 12 [A Library of awk Functions], page 213, and the
igawk program from Section 13.3.9 [An Easy Way to Use Library Functions],
page 278, are included as ready-to-use files in the gawk distribution. They are
installed as part of the installation process. The rest of the programs in this
book are available in appropriate subdirectories of awklib/eg.

posix/* Files needed for building gawk on POSIX-compliant systems.

pc/* Files needed for building gawk under MS-Windows and OS/2 (see Section B.3.1
[Installation on PC Operating Systems], page 318, for details).

vms/* Files needed for building gawk under VMS (see Section B.3.2 [How to Compile
and Install gawk on VMS], page 322, for details).

test/* A test suite for gawk. You can use ‘make check’ from the top-level gawk di-
rectory to run your version of gawk against the test suite. If gawk successfully
passes ‘make check’, then you can be confident of a successful port.

B.2 Compiling and Installing gawk on Unix-like Systems

Usually, you can compile and install gawk by typing only two commands. However, if you
use an unusual system, you may need to configure gawk for your system yourself.

B.2.1 Compiling gawk for Unix-like Systems

The normal installation steps should work on all modern commercial Unix-derived systems,
GNU/Linux, BSD-based systems, and the Cygwin environment for MS-Windows.

After you have extracted the gawk distribution, cd to gawk-4.0.2. Like most GNU
software, gawk is configured automatically for your system by running the configure pro-
gram. This program is a Bourne shell script that is generated automatically using GNU

Appendix B: Installing gawk 317

autoconf. (The autoconf software is described fully in Autoconf—Generating Automatic
Configuration Scripts, which can be found online at the Free Software Foundation’s web
site.)

To configure gawk, simply run configure:

sh ./configure

This produces a Makefile and config.h tailored to your system. The config.h file
describes various facts about your system. You might want to edit the Makefile to change
the CFLAGS variable, which controls the command-line options that are passed to the C
compiler (such as optimization levels or compiling for debugging).

Alternatively, you can add your own values for most make variables on the command
line, such as CC and CFLAGS, when running configure:

CC=cc CFLAGS=-g sh ./configure

See the file INSTALL in the gawk distribution for all the details.

After you have run configure and possibly edited the Makefile, type:

make

Shortly thereafter, you should have an executable version of gawk. That’s all there is to it!
To verify that gawk is working properly, run ‘make check’. All of the tests should succeed.
If these steps do not work, or if any of the tests fail, check the files in the README_d directory
to see if you’ve found a known problem. If the failure is not described there, please send in
a bug report (see Section B.4 [Reporting Problems and Bugs], page 324).

B.2.2 Additional Configuration Options

There are several additional options you may use on the configure command line when
compiling gawk from scratch, including:

--disable-lint

Disable all lint checking within gawk. The --lint and --lint-old options
(see Section 2.2 [Command-Line Options], page 25) are accepted, but silently
do nothing. Similarly, setting the LINT variable (see Section 7.5.1 [Built-in Vari-
ables That Control awk], page 129) has no effect on the running awk program.

When used with GCC’s automatic dead-code-elimination, this option cuts al-
most 200K bytes off the size of the gawk executable on GNU/Linux x86 systems.
Results on other systems and with other compilers are likely to vary. Using this
option may bring you some slight performance improvement.

Using this option will cause some of the tests in the test suite to fail. This
option may be removed at a later date.

--disable-nls

Disable all message-translation facilities. This is usually not desirable, but it
may bring you some slight performance improvement.

--with-whiny-user-strftime

Force use of the included version of the strftime() function for deficient sys-
tems.

Use the command ‘./configure --help’ to see the full list of options that configure
supplies.

http://www.gnu.org/software/autoconf/manual/index.html
http://www.gnu.org/software/autoconf/manual/index.html

318 GAWK: Effective AWK Programming

B.2.3 The Configuration Process

This section is of interest only if you know something about using the C language and
Unix-like operating systems.

The source code for gawk generally attempts to adhere to formal standards wherever
possible. This means that gawk uses library routines that are specified by the ISO C
standard and by the POSIX operating system interface standard. The gawk source code
requires using an ISO C compiler (the 1990 standard).

Many Unix systems do not support all of either the ISO or the POSIX standards. The
missing_d subdirectory in the gawk distribution contains replacement versions of those
functions that are most likely to be missing.

The config.h file that configure creates contains definitions that describe features
of the particular operating system where you are attempting to compile gawk. The three
things described by this file are: what header files are available, so that they can be correctly
included, what (supposedly) standard functions are actually available in your C libraries,
and various miscellaneous facts about your operating system. For example, there may
not be an st_blksize element in the stat structure. In this case, ‘HAVE_ST_BLKSIZE’ is
undefined.

It is possible for your C compiler to lie to configure. It may do so by not exiting with
an error when a library function is not available. To get around this, edit the file custom.h.
Use an ‘#ifdef’ that is appropriate for your system, and either #define any constants that
configure should have defined but didn’t, or #undef any constants that configure defined
and should not have. custom.h is automatically included by config.h.

It is also possible that the configure program generated by autoconf will not work
on your system in some other fashion. If you do have a problem, the file configure.ac is
the input for autoconf. You may be able to change this file and generate a new version
of configure that works on your system (see Section B.4 [Reporting Problems and Bugs],
page 324, for information on how to report problems in configuring gawk). The same
mechanism may be used to send in updates to configure.ac and/or custom.h.

B.3 Installation on Other Operating Systems

This section describes how to install gawk on various non-Unix systems.

B.3.1 Installation on PC Operating Systems

This section covers installation and usage of gawk on x86 machines running MS-DOS, any
version of MS-Windows, or OS/2. In this section, the term “Windows32” refers to any of
Microsoft Windows-95/98/ME/NT/2000/XP/Vista/7.

The limitations of MS-DOS (and MS-DOS shells under Windows32 or OS/2) has meant
that various “DOS extenders” are often used with programs such as gawk. The varying
capabilities of Microsoft Windows 3.1 and Windows32 can add to the confusion. For an
overview of the considerations, please refer to README_d/README.pc in the distribution.

B.3.1.1 Installing a Prepared Distribution for PC Systems

If you have received a binary distribution prepared by the MS-DOS maintainers, then
gawk and the necessary support files appear under the gnu directory, with executables in

Appendix B: Installing gawk 319

gnu/bin, libraries in gnu/lib/awk, and manual pages under gnu/man. This is designed
for easy installation to a /gnu directory on your drive—however, the files can be installed
anywhere provided AWKPATH is set properly. Regardless of the installation directory, the
first line of igawk.cmd and igawk.bat (in gnu/bin) may need to be edited.

The binary distribution contains a separate file describing the contents. In particular, it
may include more than one version of the gawk executable.

OS/2 (32 bit, EMX) binary distributions are prepared for the /usr directory of your
preferred drive. Set UNIXROOT to your installation drive (e.g., ‘e:’) if you want to install
gawk onto another drive than the hardcoded default ‘c:’. Executables appear in /usr/bin,
libraries under /usr/share/awk, manual pages under /usr/man, Texinfo documentation
under /usr/info, and NLS files under /usr/share/locale. Note that the files can be
installed anywhere provided AWKPATH is set properly.

If you already have a file /usr/info/dir from another package do not overwrite it!
Instead enter the following commands at your prompt (replace ‘x:’ by your installation
drive):

install-info --info-dir=x:/usr/info x:/usr/info/gawk.info

install-info --info-dir=x:/usr/info x:/usr/info/gawkinet.info

The binary distribution may contain a separate file containing additional or more detailed
installation instructions.

As of April, 2012, up to date gawk binaries for MS Windows are available from Eli
Zaretskii’s ports project.

B.3.1.2 Compiling gawk for PC Operating Systems

gawk can be compiled for MS-DOS, Windows32, and OS/2 using the GNU development tools
from DJ Delorie (DJGPP: MS-DOS only) or Eberhard Mattes (EMX: MS-DOS, Windows32
and OS/2). The file README_d/README.pc in the gawk distribution contains additional
notes, and pc/Makefile contains important information on compilation options.

To build gawk for MS-DOS and Windows32, copy the files in the pc directory (except
for ChangeLog) to the directory with the rest of the gawk sources, then invoke make with
the appropriate target name as an argument to build gawk. The Makefile copied from the
pc directory contains a configuration section with comments and may need to be edited in
order to work with your make utility.

The Makefile supports a number of targets for building various MS-DOS and Win-
dows32 versions. A list of targets is printed if the make command is given without a target.
As an example, to build gawk using the DJGPP tools, enter ‘make djgpp’. (The DJGPP
tools needed for the build may be found at ftp://ftp.delorie.com/pub/djgpp/current/
v2gnu/.) To build a native MS-Windows binary of gawk, type ‘make mingw32’.

The 32 bit EMX version of gawk works “out of the box” under OS/2. However, it is
highly recommended to use GCC 2.95.3 for the compilation. In principle, it is possible to
compile gawk the following way:

$./configure

$ make

This is not recommended, though. To get an OMF executable you should use the
following commands at your sh prompt:

http://sourceforge.net/projects/ezwinports/files/
http://sourceforge.net/projects/ezwinports/files/
ftp://ftp.delorie.com/pub/djgpp/current/v2gnu/
ftp://ftp.delorie.com/pub/djgpp/current/v2gnu/

320 GAWK: Effective AWK Programming

$ CFLAGS="-O2 -Zomf -Zmt"

$ export CFLAGS

$ LDFLAGS="-s -Zcrtdll -Zlinker /exepack:2 -Zlinker /pm:vio -Zstack 0x6000"

$ export LDFLAGS

$ RANLIB="echo"

$ export RANLIB

$./configure --prefix=c:/usr

$ make AR=emxomfar

These are just suggestions for use with GCC 2.x. You may use any other set of (self-
consistent) environment variables and compiler flags.

If you use GCC 2.95 it is recommended to use also:

$ LIBS="-lgcc"

$ export LIBS

You can also get an a.out executable if you prefer:

$ CFLAGS="-O2 -Zmt"

$ export CFLAGS

$ LDFLAGS="-s -Zstack 0x6000"

$ LIBS="-lgcc"

$ unset RANLIB

$./configure --prefix=c:/usr

$ make

NOTE: Compilation of a.out executables also works with GCC 3.2. Versions
later than GCC 3.2 have not been tested successfully.

‘make install’ works as expected with the EMX build.

NOTE: Ancient OS/2 ports of GNU make are not able to handle the Makefiles
of this package. If you encounter any problems with make, try GNU Make 3.79.1
or later versions. You should find the latest version on ftp://hobbes.nmsu.

edu/pub/os2/.

B.3.1.3 Testing gawk on PC Operating Systems

Using make to run the standard tests and to install gawk requires additional Unix-like tools,
including sh, sed, and cp. In order to run the tests, the test/*.ok files may need to be
converted so that they have the usual MS-DOS-style end-of-line markers. Alternatively, run
make check CMP="diff -a" to use GNU diff in text mode instead of cmp to compare the
resulting files.

Most of the tests work properly with Stewartson’s shell along with the companion utili-
ties or appropriate GNU utilities. However, some editing of test/Makefile is required. It is
recommended that you copy the file pc/Makefile.tst over the file test/Makefile as a re-
placement. Details can be found in README_d/README.pc and in the file pc/Makefile.tst.

On OS/2 the pid test fails because spawnl() is used instead of fork()/execl() to start
child processes. Also the mbfw1 and mbprintf1 tests fail because the needed multibyte
functionality is not available.

ftp://hobbes.nmsu.edu/pub/os2/
ftp://hobbes.nmsu.edu/pub/os2/

Appendix B: Installing gawk 321

B.3.1.4 Using gawk on PC Operating Systems

With the exception of the Cygwin environment, the ‘|&’ operator and TCP/IP networking
(see Section 11.4 [Using gawk for Network Programming], page 207) are not supported for
MS-DOS or MS-Windows. EMX (OS/2 only) does support at least the ‘|&’ operator.

The MS-DOS and MS-Windows versions of gawk search for program files as described
in Section 2.5.1 [The AWKPATH Environment Variable], page 32. However, semicolons
(rather than colons) separate elements in the AWKPATH variable. If AWKPATH is not set
or is empty, then the default search path for MS-Windows and MS-DOS versions is
".;c:/lib/awk;c:/gnu/lib/awk".

The search path for OS/2 (32 bit, EMX) is determined by the prefix directory (most
likely /usr or c:/usr) that has been specified as an option of the configure script like it
is the case for the Unix versions. If c:/usr is the prefix directory then the default search
path contains . and c:/usr/share/awk. Additionally, to support binary distributions of
gawk for OS/2 systems whose drive ‘c:’ might not support long file names or might not
exist at all, there is a special environment variable. If UNIXROOT specifies a drive then this
specific drive is also searched for program files. E.g., if UNIXROOT is set to e: the complete
default search path is ".;c:/usr/share/awk;e:/usr/share/awk".

An sh-like shell (as opposed to command.com under MS-DOS or cmd.exe under MS-
Windows or OS/2) may be useful for awk programming. The DJGPP collection of tools
includes an MS-DOS port of Bash, and several shells are available for OS/2, including ksh.

Under MS-Windows, OS/2 and MS-DOS, gawk (and many other text programs) silently
translate end-of-line "\r\n" to "\n" on input and "\n" to "\r\n" on output. A special
BINMODE variable (c.e.) allows control over these translations and is interpreted as follows:

• If BINMODE is "r", or one, then binary mode is set on read (i.e., no translations on
reads).

• If BINMODE is "w", or two, then binary mode is set on write (i.e., no translations on
writes).

• If BINMODE is "rw" or "wr" or three, binary mode is set for both read and write.

• BINMODE=non-null-string is the same as ‘BINMODE=3’ (i.e., no translations on reads
or writes). However, gawk issues a warning message if the string is not one of "rw" or
"wr".

The modes for standard input and standard output are set one time only (after the command
line is read, but before processing any of the awk program). Setting BINMODE for standard
input or standard output is accomplished by using an appropriate ‘-v BINMODE=N’ option
on the command line. BINMODE is set at the time a file or pipe is opened and cannot be
changed mid-stream.

The name BINMODE was chosen to match mawk (see Section B.5 [Other Freely Available
awk Implementations], page 325). mawk and gawk handle BINMODE similarly; however, mawk
adds a ‘-W BINMODE=N’ option and an environment variable that can set BINMODE, RS, and
ORS. The files binmode[1-3].awk (under gnu/lib/awk in some of the prepared distribu-
tions) have been chosen to match mawk’s ‘-W BINMODE=N’ option. These can be changed or
discarded; in particular, the setting of RS giving the fewest “surprises” is open to debate.
mawk uses ‘RS = "\r\n"’ if binary mode is set on read, which is appropriate for files with
the MS-DOS-style end-of-line.

322 GAWK: Effective AWK Programming

To illustrate, the following examples set binary mode on writes for standard output and
other files, and set ORS as the “usual” MS-DOS-style end-of-line:

gawk -v BINMODE=2 -v ORS="\r\n" ...

or:

gawk -v BINMODE=w -f binmode2.awk ...

These give the same result as the ‘-W BINMODE=2’ option in mawk. The following changes the
record separator to "\r\n" and sets binary mode on reads, but does not affect the mode
on standard input:

gawk -v RS="\r\n" --source "BEGIN { BINMODE = 1 }" ...

or:

gawk -f binmode1.awk ...

With proper quoting, in the first example the setting of RS can be moved into the BEGIN

rule.

B.3.1.5 Using gawk In The Cygwin Environment

gawk can be built and used “out of the box” under MS-Windows if you are using the Cygwin
environment. This environment provides an excellent simulation of Unix, using the GNU
tools, such as Bash, the GNU Compiler Collection (GCC), GNU Make, and other GNU
programs. Compilation and installation for Cygwin is the same as for a Unix system:

tar -xvpzf gawk-4.0.2.tar.gz

cd gawk-4.0.2

./configure

make

When compared to GNU/Linux on the same system, the ‘configure’ step on Cygwin
takes considerably longer. However, it does finish, and then the ‘make’ proceeds as usual.

NOTE: The ‘|&’ operator and TCP/IP networking (see Section 11.4 [Using
gawk for Network Programming], page 207) are fully supported in the Cygwin
environment. This is not true for any other environment on MS-Windows.

B.3.1.6 Using gawk In The MSYS Environment

In the MSYS environment under MS-Windows, gawk automatically uses binary mode for
reading and writing files. Thus there is no need to use the BINMODE variable.

This can cause problems with other Unix-like components that have been ported to MS-
Windows that expect gawk to do automatic translation of "\r\n", since it won’t. Caveat
Emptor!

B.3.2 How to Compile and Install gawk on VMS

This subsection describes how to compile and install gawk under VMS. The older designation
“VMS” is used throughout to refer to OpenVMS.

B.3.2.1 Compiling gawk on VMS

To compile gawk under VMS, there is a DCL command procedure that issues all the necessary
CC and LINK commands. There is also a Makefile for use with the MMS utility. From the
source directory, use either:

http://www.cygwin.com
http://www.cygwin.com

Appendix B: Installing gawk 323

$ @[.VMS]VMSBUILD.COM

or:

$ MMS/DESCRIPTION=[.VMS]DESCRIP.MMS GAWK

Older versions of gawk could be built with VAX C or GNU C on VAX/VMS, as well
as with DEC C, but that is no longer supported. DEC C (also briefly known as “Compaq
C” and now known as “HP C,” but referred to here as “DEC C”) is required. Both
VMSBUILD.COM and DESCRIP.MMS contain some obsolete support for the older compilers but
are set up to use DEC C by default.

gawk has been tested under Alpha/VMS 7.3-1 using Compaq C V6.4, and on Alpha/VMS
7.3, Alpha/VMS 7.3-2, and IA64/VMS 8.3.1

B.3.2.2 Installing gawk on VMS

To install gawk, all you need is a “foreign” command, which is a DCL symbol whose value
begins with a dollar sign. For example:

$ GAWK :== $disk1:[gnubin]GAWK

Substitute the actual location of gawk.exe for ‘$disk1:[gnubin]’. The symbol should be
placed in the login.com of any user who wants to run gawk, so that it is defined every time
the user logs on. Alternatively, the symbol may be placed in the system-wide sylogin.com
procedure, which allows all users to run gawk.

Optionally, the help entry can be loaded into a VMS help library:

$ LIBRARY/HELP SYS$HELP:HELPLIB [.VMS]GAWK.HLP

(You may want to substitute a site-specific help library rather than the standard VMS
library ‘HELPLIB’.) After loading the help text, the command:

$ HELP GAWK

provides information about both the gawk implementation and the awk programming lan-
guage.

The logical name ‘AWK_LIBRARY’ can designate a default location for awk program files.
For the -f option, if the specified file name has no device or directory path information in
it, gawk looks in the current directory first, then in the directory specified by the translation
of ‘AWK_LIBRARY’ if the file is not found. If, after searching in both directories, the file still
is not found, gawk appends the suffix ‘.awk’ to the filename and retries the file search. If
‘AWK_LIBRARY’ has no definition, a default value of ‘SYS$LIBRARY:’ is used for it.

B.3.2.3 Running gawk on VMS

Command-line parsing and quoting conventions are significantly different on VMS, so exam-
ples in this book or from other sources often need minor changes. They are minor though,
and all awk programs should run correctly.

Here are a couple of trivial tests:

$ gawk -- "BEGIN {print ""Hello, World!""}"

$ gawk -"W" version

! could also be -"W version" or "-W version"

1 The IA64 architecture is also known as “Itanium.”

324 GAWK: Effective AWK Programming

Note that uppercase and mixed-case text must be quoted.

The VMS port of gawk includes a DCL-style interface in addition to the original shell-style
interface (see the help entry for details). One side effect of dual command-line parsing is that
if there is only a single parameter (as in the quoted string program above), the command
becomes ambiguous. To work around this, the normally optional -- flag is required to force
Unix-style parsing rather than DCL parsing. If any other dash-type options (or multiple
parameters such as data files to process) are present, there is no ambiguity and -- can be
omitted.

The default search path, when looking for awk program files specified by the -f option,
is "SYS$DISK:[],AWK_LIBRARY:". The logical name AWKPATH can be used to override this
default. The format of AWKPATH is a comma-separated list of directory specifications. When
defining it, the value should be quoted so that it retains a single translation and not a
multitranslation RMS searchlist.

B.3.2.4 Some VMS Systems Have An Old Version of gawk

Some versions of VMS have an old version of gawk. To access it, define a symbol, as follows:

$ gawk :== syscommon:[syshlp.examples.tcpip.snmp]gawk.exe

This is apparently version 2.15.6, which is extremely old. We recommend compiling and
using the current version.

B.4 Reporting Problems and Bugs

There is nothing more dangerous than a bored archeologist.
The Hitchhiker’s Guide to the Galaxy

If you have problems with gawk or think that you have found a bug, please report it to
the developers; we cannot promise to do anything but we might well want to fix it.

Before reporting a bug, make sure you have actually found a real bug. Carefully reread
the documentation and see if it really says you can do what you’re trying to do. If it’s not
clear whether you should be able to do something or not, report that too; it’s a bug in the
documentation!

Before reporting a bug or trying to fix it yourself, try to isolate it to the smallest possible
awk program and input data file that reproduces the problem. Then send us the program
and data file, some idea of what kind of Unix system you’re using, the compiler you used to
compile gawk, and the exact results gawk gave you. Also say what you expected to occur;
this helps us decide whether the problem is really in the documentation.

Please include the version number of gawk you are using. You can get this information
with the command ‘gawk --version’.

Once you have a precise problem, send email to bug-gawk@gnu.org.

Using this address automatically sends a copy of your mail to me. If necessary, I can be
reached directly at arnold@skeeve.com. The bug reporting address is preferred since the
email list is archived at the GNU Project. All email should be in English, since that is my
native language.

CAUTION: Do not try to report bugs in gawk by posting to the Usenet/Internet
newsgroup comp.lang.awk. While the gawk developers do occasionally read

mailto:bug-gawk@gnu.org
mailto:arnold@skeeve.com

Appendix B: Installing gawk 325

this newsgroup, there is no guarantee that we will see your posting. The steps
described above are the official recognized ways for reporting bugs. Really.

NOTE: Many distributions of GNU/Linux and the various BSD-based oper-
ating systems have their own bug reporting systems. If you report a bug
using your distribution’s bug reporting system, please also send a copy to
bug-gawk@gnu.org.

This is for two reasons. First, while some distributions forward bug reports
“upstream” to the GNU mailing list, many don’t, so there is a good chance
that the gawk maintainer won’t even see the bug report! Second, mail to the
GNU list is archived, and having everything at the GNU project keeps things
self-contained and not dependant on other web sites.

Non-bug suggestions are always welcome as well. If you have questions about things
that are unclear in the documentation or are just obscure features, ask me; I will try to help
you out, although I may not have the time to fix the problem. You can send me electronic
mail at the Internet address noted previously.

If you find bugs in one of the non-Unix ports of gawk, please send an electronic mail
message to the person who maintains that port. They are named in the following list, as
well as in the README file in the gawk distribution. Information in the README file should be
considered authoritative if it conflicts with this book.

The people maintaining the non-Unix ports of gawk are as follows:

MS-DOS with DJGPP Scott Deifik, scottd.mail@sbcglobal.net.

MS-Windows with MINGW Eli Zaretskii, eliz@gnu.org.

OS/2 Andreas Buening, andreas.buening@nexgo.de.

VMS Pat Rankin, r.pat.rankin@gmail.com

z/OS (OS/390) Dave Pitts, dpitts@cozx.com.

If your bug is also reproducible under Unix, please send a copy of your report to the
bug-gawk@gnu.org email list as well.

B.5 Other Freely Available awk Implementations

It’s kind of fun to put comments like this in your awk code.
// Do C++ comments work? answer: yes! of course

Michael Brennan

There are a number of other freely available awk implementations. This section briefly
describes where to get them:

Unix awk Brian Kernighan, one of the original designers of Unix awk, has made his imple-
mentation of awk freely available. You can retrieve this version via the World
Wide Web from his home page. It is available in several archive formats:

Shell archive
http://www.cs.princeton.edu/~bwk/btl.mirror/awk.shar

mailto:bug-gawk@gnu.org
mailto:scottd.mail@sbcglobal.net
mailto:eliz@gnu.org
mailto:andreas.buening@nexgo.de
mailto:r.pat.rankin@gmail.com
mailto:dpitts@cozx.com
mailto:bug-gawk@gnu.org
http://www.cs.princeton.edu/~bwk
http://www.cs.princeton.edu/~bwk/btl.mirror/awk.shar

326 GAWK: Effective AWK Programming

Compressed tar file
http://www.cs.princeton.edu/~bwk/btl.mirror/awk.tar.gz

Zip file http://www.cs.princeton.edu/~bwk/btl.mirror/awk.zip

This version requires an ISO C (1990 standard) compiler; the C compiler from
GCC (the GNU Compiler Collection) works quite nicely.

See Section A.6 [Common Extensions Summary], page 307, for a list of exten-
sions in this awk that are not in POSIX awk.

mawk Michael Brennan wrote an independent implementation of awk, called mawk. It
is available under the GPL (see [GNU General Public License], page 361), just
as gawk is.

The original distribution site for the mawk source code no longer has it. A copy
is available at http://www.skeeve.com/gawk/mawk1.3.3.tar.gz.

In 2009, Thomas Dickey took on mawk maintenance. Basic information
is available on the project’s web page. The download URL is http: / /

invisible-island.net/datafiles/release/mawk.tar.gz.

Once you have it, gunzip may be used to decompress this file. Installation is
similar to gawk’s (see Section B.2 [Compiling and Installing gawk on Unix-like
Systems], page 316).

See Section A.6 [Common Extensions Summary], page 307, for a list of exten-
sions in mawk that are not in POSIX awk.

awka Written by Andrew Sumner, awka translates awk programs into C, compiles
them, and links them with a library of functions that provides the core awk

functionality. It also has a number of extensions.

The awk translator is released under the GPL, and the library is under the
LGPL.

To get awka, go to http://sourceforge.net/projects/awka.

The project seems to be frozen; no new code changes have been made since
approximately 2003.

pawk Nelson H.F. Beebe at the University of Utah has modified Brian Kernighan’s
awk to provide timing and profiling information. It is different from pgawk (see
Section 11.5 [Profiling Your awk Programs], page 209), in that it uses CPU-
based profiling, not line-count profiling. You may find it at either ftp://ftp.
math.utah.edu/pub/pawk/pawk-20030606.tar.gz or http://www.math.

utah.edu/pub/pawk/pawk-20030606.tar.gz.

Busybox Awk
Busybox is a GPL-licensed program providing small versions of many appli-
cations within a single executable. It is aimed at embedded systems. It in-
cludes a full implementation of POSIX awk. When building it, be careful not
to do ‘make install’ as it will overwrite copies of other applications in your
/usr/local/bin. For more information, see the project’s home page.

The OpenSolaris POSIX awk

The version of awk in /usr/xpg4/bin on Solaris is more-or-less POSIX-
compliant. It is based on the awk from Mortice Kern Systems for PCs. The

http://www.cs.princeton.edu/~bwk/btl.mirror/awk.tar.gz
http://www.cs.princeton.edu/~bwk/btl.mirror/awk.zip
http://www.skeeve.com/gawk/mawk1.3.3.tar.gz
http://www.invisible-island.net/mawk/mawk.html
http://invisible-island.net/datafiles/release/mawk.tar.gz
http://invisible-island.net/datafiles/release/mawk.tar.gz
http://sourceforge.net/projects/awka
ftp://ftp.math.utah.edu/pub/pawk/pawk-20030606.tar.gz
ftp://ftp.math.utah.edu/pub/pawk/pawk-20030606.tar.gz
http://www.math.utah.edu/pub/pawk/pawk-20030606.tar.gz
http://www.math.utah.edu/pub/pawk/pawk-20030606.tar.gz
http://busybox.net

Appendix B: Installing gawk 327

source code can be downloaded from the OpenSolaris web site. This author
was able to make it compile and work under GNU/Linux with 1–2 hours
of work. Making it more generally portable (using GNU Autoconf and/or
Automake) would take more work, and this has not been done, at least to our
knowledge.

jawk This is an interpreter for awk written in Java. It claims to be a full interpreter,
although because it uses Java facilities for I/O and for regexp matching, the
language it supports is different from POSIX awk. More information is available
on the project’s home page.

Libmawk This is an embeddable awk interpreter derived from mawk. For more information
see http://repo.hu/projects/libmawk/.

QSE Awk This is an embeddable awk interpreter. For more information see http://code.
google.com/p/qse/ and http://awk.info/?tools/qse.

QTawk This is an independent implementation of awk distributed under the GPL. It
has a large number of extensions over standard awk and may not be 100%
syntactically compatible with it. See http://www.quiktrim.org/QTawk.html

for more information, including the manual and a download link.

xgawk XML gawk. This is a fork of the gawk 3.1.6 source base to support processing
XML files. It has a number of interesting extensions which should one day
be integrated into the main gawk code base. For more information, see the
XMLgawk project web site.

http://www.opensolaris.org
http://jawk.sourceforge.net
http://repo.hu/projects/libmawk/
http://code.google.com/p/qse/
http://code.google.com/p/qse/
http://awk.info/?tools/qse
http://www.quiktrim.org/QTawk.html
http://xmlgawk.sourceforge.net
http://xmlgawk.sourceforge.net

Appendix C: Implementation Notes 329

Appendix C Implementation Notes

This appendix contains information mainly of interest to implementers and maintainers of
gawk. Everything in it applies specifically to gawk and not to other implementations.

C.1 Downward Compatibility and Debugging

See Section A.5 [Extensions in gawk Not in POSIX awk], page 305, for a summary of the
GNU extensions to the awk language and program. All of these features can be turned off
by invoking gawk with the --traditional option or with the --posix option.

If gawk is compiled for debugging with ‘-DDEBUG’, then there is one more option available
on the command line:

-Y

--parsedebug

Prints out the parse stack information as the program is being parsed.

This option is intended only for serious gawk developers and not for the casual user.
It probably has not even been compiled into your version of gawk, since it slows down
execution.

C.2 Making Additions to gawk

If you find that you want to enhance gawk in a significant fashion, you are perfectly free to
do so. That is the point of having free software; the source code is available and you are
free to change it as you want (see [GNU General Public License], page 361).

This section discusses the ways you might want to change gawk as well as any consider-
ations you should bear in mind.

C.2.1 Accessing The gawk Git Repository

As gawk is Free Software, the source code is always available. Section B.1 [The gawk

Distribution], page 313, describes how to get and build the formal, released versions of
gawk.

However, if you want to modify gawk and contribute back your changes, you will probably
wish to work with the development version. To do so, you will need to access the gawk source
code repository. The code is maintained using the Git distributed version control system.
You will need to install it if your system doesn’t have it. Once you have done so, use the
command:

git clone git://git.savannah.gnu.org/gawk.git

This will clone the gawk repository. If you are behind a firewall that will not allow you to
use the Git native protocol, you can still access the repository using:

git clone http://git.savannah.gnu.org/r/gawk.git

Once you have made changes, you can use ‘git diff’ to produce a patch, and send that
to the gawk maintainer; see Section B.4 [Reporting Problems and Bugs], page 324 for how
to do that.

Finally, if you cannot install Git (e.g., if it hasn’t been ported yet to your operating
system), you can use the Git–CVS gateway to check out a copy using CVS, as follows:

cvs -d:pserver:anonymous@pserver.git.sv.gnu.org:/gawk.git co -d gawk master

http://git-scm.com/

330 GAWK: Effective AWK Programming

C.2.2 Adding New Features

You are free to add any new features you like to gawk. However, if you want your changes
to be incorporated into the gawk distribution, there are several steps that you need to take
in order to make it possible to include your changes:

1. Before building the new feature into gawk itself, consider writing it as an extension
module (see Section C.3 [Adding New Built-in Functions to gawk], page 332). If that’s
not possible, continue with the rest of the steps in this list.

2. Be prepared to sign the appropriate paperwork. In order for the FSF to distribute
your changes, you must either place those changes in the public domain and submit
a signed statement to that effect, or assign the copyright in your changes to the FSF.
Both of these actions are easy to do and many people have done so already. If you
have questions, please contact me (see Section B.4 [Reporting Problems and Bugs],
page 324), or assign@gnu.org.

3. Get the latest version. It is much easier for me to integrate changes if they are relative
to the most recent distributed version of gawk. If your version of gawk is very old, I may
not be able to integrate them at all. (See Section B.1.1 [Getting the gawk Distribution],
page 313, for information on getting the latest version of gawk.)

4. Follow theGNU Coding Standards. This document describes how GNU software should
be written. If you haven’t read it, please do so, preferably before starting to modify
gawk. (The GNU Coding Standards are available from the GNU Project’s web site.
Texinfo, Info, and DVI versions are also available.)

5. Use the gawk coding style. The C code for gawk follows the instructions in the GNU
Coding Standards, with minor exceptions. The code is formatted using the traditional
“K&R” style, particularly as regards to the placement of braces and the use of TABs.
In brief, the coding rules for gawk are as follows:

• Use ANSI/ISO style (prototype) function headers when defining functions.

• Put the name of the function at the beginning of its own line.

• Put the return type of the function, even if it is int, on the line above the line
with the name and arguments of the function.

• Put spaces around parentheses used in control structures (if, while, for, do,
switch, and return).

• Do not put spaces in front of parentheses used in function calls.

• Put spaces around all C operators and after commas in function calls.

• Do not use the comma operator to produce multiple side effects, except in for

loop initialization and increment parts, and in macro bodies.

• Use real TABs for indenting, not spaces.

• Use the “K&R” brace layout style.

• Use comparisons against NULL and ’\0’ in the conditions of if, while, and for

statements, as well as in the cases of switch statements, instead of just the plain
pointer or character value.

• Use the TRUE, FALSE and NULL symbolic constants and the character constant ’\0’
where appropriate, instead of 1 and 0.

• Provide one-line descriptive comments for each function.

mailto:assign@gnu.org
http://www.gnu.org/prep/standards_toc.html

Appendix C: Implementation Notes 331

• Do not use the alloca() function for allocating memory off the stack. Its use
causes more portability trouble than is worth the minor benefit of not having to
free the storage. Instead, use malloc() and free().

• Do not use comparisons of the form ‘! strcmp(a, b)’ or similar. As Henry Spencer
once said, “strcmp() is not a boolean!” Instead, use ‘strcmp(a, b) == 0’.

• If adding new bit flag values, use explicit hexadecimal constants (0x001, 0x002,
0x004, and son on) instead of shifting one left by successive amounts (‘(1<<0)’,
‘(1<<1)’, and so on).

NOTE: If I have to reformat your code to follow the coding style used in
gawk, I may not bother to integrate your changes at all.

6. Update the documentation. Along with your new code, please supply new sections
and/or chapters for this book. If at all possible, please use real Texinfo, instead of just
supplying unformatted ASCII text (although even that is better than no documenta-
tion at all). Conventions to be followed in GAWK: Effective AWK Programming are
provided after the ‘@bye’ at the end of the Texinfo source file. If possible, please update
the man page as well.

You will also have to sign paperwork for your documentation changes.

7. Submit changes as unified diffs. Use ‘diff -u -r -N’ to compare the original gawk
source tree with your version. I recommend using the GNU version of diff. Send
the output produced by either run of diff to me when you submit your changes.
(See Section B.4 [Reporting Problems and Bugs], page 324, for the electronic mail
information.)

Using this format makes it easy for me to apply your changes to the master version of
the gawk source code (using patch). If I have to apply the changes manually, using a
text editor, I may not do so, particularly if there are lots of changes.

8. Include an entry for the ChangeLog file with your submission. This helps further
minimize the amount of work I have to do, making it easier for me to accept patches.

Although this sounds like a lot of work, please remember that while you may write the
new code, I have to maintain it and support it. If it isn’t possible for me to do that with a
minimum of extra work, then I probably will not.

C.2.3 Porting gawk to a New Operating System

If you want to port gawk to a new operating system, there are several steps:

1. Follow the guidelines in the previous section concerning coding style, submission of
diffs, and so on.

2. Be prepared to sign the appropriate paperwork. In order for the FSF to distribute
your code, you must either place your code in the public domain and submit a signed
statement to that effect, or assign the copyright in your code to the FSF.

3. When doing a port, bear in mind that your code must coexist peacefully with the rest
of gawk and the other ports. Avoid gratuitous changes to the system-independent parts
of the code. If at all possible, avoid sprinkling ‘#ifdef’s just for your port throughout
the code.

If the changes needed for a particular system affect too much of the code, I probably
will not accept them. In such a case, you can, of course, distribute your changes on

332 GAWK: Effective AWK Programming

your own, as long as you comply with the GPL (see [GNU General Public License],
page 361).

4. A number of the files that come with gawk are maintained by other people. Thus, you
should not change them unless it is for a very good reason; i.e., changes are not out
of the question, but changes to these files are scrutinized extra carefully. The files
are dfa.c, dfa.h, getopt1.c, getopt.c, getopt.h, install-sh, mkinstalldirs,
regcomp.c, regex.c, regexec.c, regexex.c, regex.h, regex_internal.c, and
regex_internal.h.

5. Be willing to continue to maintain the port. Non-Unix operating systems are supported
by volunteers who maintain the code needed to compile and run gawk on their systems.
If noone volunteers to maintain a port, it becomes unsupported and it may be necessary
to remove it from the distribution.

6. Supply an appropriate gawkmisc.??? file. Each port has its own gawkmisc.??? that
implements certain operating system specific functions. This is cleaner than a plethora
of ‘#ifdef’s scattered throughout the code. The gawkmisc.c in the main source di-
rectory includes the appropriate gawkmisc.??? file from each subdirectory. Be sure to
update it as well.

Each port’s gawkmisc.??? file has a suffix reminiscent of the machine or operating
system for the port—for example, pc/gawkmisc.pc and vms/gawkmisc.vms. The use
of separate suffixes, instead of plain gawkmisc.c, makes it possible to move files from
a port’s subdirectory into the main subdirectory, without accidentally destroying the
real gawkmisc.c file. (Currently, this is only an issue for the PC operating system
ports.)

7. Supply a Makefile as well as any other C source and header files that are necessary for
your operating system. All your code should be in a separate subdirectory, with a name
that is the same as, or reminiscent of, either your operating system or the computer
system. If possible, try to structure things so that it is not necessary to move files out
of the subdirectory into the main source directory. If that is not possible, then be sure
to avoid using names for your files that duplicate the names of files in the main source
directory.

8. Update the documentation. Please write a section (or sections) for this book describing
the installation and compilation steps needed to compile and/or install gawk for your
system.

Following these steps makes it much easier to integrate your changes into gawk and have
them coexist happily with other operating systems’ code that is already there.

In the code that you supply and maintain, feel free to use a coding style and brace layout
that suits your taste.

C.3 Adding New Built-in Functions to gawk

Danger Will Robinson! Danger!!
Warning! Warning!
The Robot

It is possible to add new built-in functions to gawk using dynamically loaded libraries.
This facility is available on systems (such as GNU/Linux) that support the C dlopen()

Appendix C: Implementation Notes 333

and dlsym() functions. This section describes how to write and use dynamically loaded
extensions for gawk. Experience with programming in C or C++ is necessary when reading
this section.

CAUTION: The facilities described in this section are very much subject to
change in a future gawk release. Be aware that you may have to re-do every-
thing, at some future time.

If you have written your own dynamic extensions, be sure to recompile them for
each new gawk release. There is no guarantee of binary compatibility between
different releases, nor will there ever be such a guarantee.

NOTE: When --sandbox is specified, extensions are disabled (see Section 2.2
[Command-Line Options], page 25.

C.3.1 A Minimal Introduction to gawk Internals

The truth is that gawk was not designed for simple extensibility. The facilities for adding
functions using shared libraries work, but are something of a “bag on the side.” Thus,
this tour is brief and simplistic; would-be gawk hackers are encouraged to spend some time
reading the source code before trying to write extensions based on the material presented
here. Of particular note are the files awk.h, builtin.c, and eval.c. Reading awkgram.y

in order to see how the parse tree is built would also be of use.

With the disclaimers out of the way, the following types, structure members, functions,
and macros are declared in awk.h and are of use when writing extensions. The next section
shows how they are used:

AWKNUM An AWKNUM is the internal type of awk floating-point numbers. Typically, it is a
C double.

NODE Just about everything is done using objects of type NODE. These contain both
strings and numbers, as well as variables and arrays.

AWKNUM force_number(NODE *n)

This macro forces a value to be numeric. It returns the actual numeric value
contained in the node. It may end up calling an internal gawk function.

void force_string(NODE *n)

This macro guarantees that a NODE’s string value is current. It may end up
calling an internal gawk function. It also guarantees that the string is zero-
terminated.

void force_wstring(NODE *n)

Similarly, this macro guarantees that a NODE’s wide-string value is current. It
may end up calling an internal gawk function. It also guarantees that the wide
string is zero-terminated.

size_t get_curfunc_arg_count(void)

This function returns the actual number of parameters passed to the current
function. Inside the code of an extension this can be used to determine the
maximum index which is safe to use with get_actual_argument. If this value
is greater than nargs, the function was called incorrectly from the awk program.

334 GAWK: Effective AWK Programming

nargs Inside an extension function, this is the maximum number of expected param-
eters, as set by the make_builtin() function.

n->stptr

n->stlen The data and length of a NODE’s string value, respectively. The string is not
guaranteed to be zero-terminated. If you need to pass the string value to a C
library function, save the value in n->stptr[n->stlen], assign ’\0’ to it, call
the routine, and then restore the value.

n->wstptr

n->wstlen

The data and length of a NODE’s wide-string value, respectively. Use force_

wstring() to make sure these values are current.

n->type The type of the NODE. This is a C enum. Values should be one of Node_var,
Node_var_new, or Node_var_array for function parameters.

n->vname The “variable name” of a node. This is not of much use inside externally written
extensions.

void assoc_clear(NODE *n)

Clears the associative array pointed to by n. Make sure that ‘n->type ==

Node_var_array’ first.

NODE **assoc_lookup(NODE *symbol, NODE *subs, int reference)

Finds, and installs if necessary, array elements. symbol is the array, subs is
the subscript. This is usually a value created with make_string() (see below).
reference should be TRUE if it is an error to use the value before it is created.
Typically, FALSE is the correct value to use from extension functions.

NODE *make_string(char *s, size_t len)

Take a C string and turn it into a pointer to a NODE that can be stored appropri-
ately. This is permanent storage; understanding of gawk memory management
is helpful.

NODE *make_number(AWKNUM val)

Take an AWKNUM and turn it into a pointer to a NODE that can be stored appropri-
ately. This is permanent storage; understanding of gawk memory management
is helpful.

NODE *dupnode(NODE *n)

Duplicate a node. In most cases, this increments an internal reference count
instead of actually duplicating the entire NODE; understanding of gawk memory
management is helpful.

void unref(NODE *n)

This macro releases the memory associated with a NODE allocated with make_

string() or make_number(). Understanding of gawk memory management is
helpful.

void make_builtin(const char *name, NODE *(*func)(NODE *), int count)

Register a C function pointed to by func as new built-in function name. name
is a regular C string. count is the maximum number of arguments that the
function takes. The function should be written in the following manner:

Appendix C: Implementation Notes 335

/* do_xxx --- do xxx function for gawk */

NODE *

do_xxx(int nargs)

{

...

}

NODE *get_argument(int i)

This function is called from within a C extension function to get the i-th
argument from the function call. The first argument is argument zero.

NODE *get_actual_argument(int i,

int optional, int wantarray);

This function retrieves a particular argument i. wantarray is TRUE if the argu-
ment should be an array, FALSE otherwise. If optional is TRUE, the argument
need not have been supplied. If it wasn’t, the return value is NULL. It is a fatal
error if optional is TRUE but the argument was not provided.

get_scalar_argument(i, opt)

This is a convenience macro that calls get_actual_argument().

get_array_argument(i, opt)

This is a convenience macro that calls get_actual_argument().

void update_ERRNO(void)

This function is called from within a C extension function to set the value of
gawk’s ERRNO variable, based on the current value of the C errno global variable.
It is provided as a convenience.

void update_ERRNO_saved(int errno_saved)

This function is called from within a C extension function to set the value of
gawk’s ERRNO variable, based on the error value provided as the argument. It is
provided as a convenience.

void register_deferred_variable(const char *name, NODE *(*load_func)(void))

This function is called to register a function to be called when a reference to an
undefined variable with the given name is encountered. The callback function
will never be called if the variable exists already, so, unless the calling code is
running at program startup, it should first check whether a variable of the given
name already exists. The argument function must return a pointer to a NODE

containing the newly created variable. This function is used to implement the
builtin ENVIRON and PROCINFO arrays, so you can refer to them for examples.

void register_open_hook(void *(*open_func)(IOBUF *))

This function is called to register a function to be called whenever a new data file
is opened, leading to the creation of an IOBUF structure in iop_alloc(). After
creating the new IOBUF, iop_alloc() will call (in reverse order of registration,
so the last function registered is called first) each open hook until one returns
non-NULL. If any hook returns a non-NULL value, that value is assigned to the
IOBUF’s opaque field (which will presumably point to a structure containing

336 GAWK: Effective AWK Programming

additional state associated with the input processing), and no further open
hooks are called.

The function called will most likely want to set the IOBUF’s get_record method
to indicate that future input records should be retrieved by calling that method
instead of using the standard gawk input processing.

And the function will also probably want to set the IOBUF’s close_funcmethod
to be called when the file is closed to clean up any state associated with the
input.

Finally, hook functions should be prepared to receive an IOBUF structure where
the fd field is set to INVALID_HANDLE, meaning that gawk was not able to open
the file itself. In this case, the hook function must be able to successfully open
the file and place a valid file descriptor there.

Currently, for example, the hook function facility is used to implement the
XML parser shared library extension. For more info, please look in awk.h and
in io.c.

An argument that is supposed to be an array needs to be handled with some extra code,
in case the array being passed in is actually from a function parameter.

The following boilerplate code shows how to do this:

NODE *the_arg;

/* assume need 3rd arg, 0-based */

the_arg = get_array_argument(2, FALSE);

Again, you should spend time studying the gawk internals; don’t just blindly copy this
code.

C.3.2 Extension Licensing

Every dynamic extension should define the global symbol plugin_is_GPL_compatible to
assert that it has been licensed under a GPL-compatible license. If this symbol does not
exist, gawk will emit a fatal error and exit.

The declared type of the symbol should be int. It does not need to be in any allo-
cated section, though. The code merely asserts that the symbol exists in the global scope.
Something like this is enough:

int plugin_is_GPL_compatible;

C.3.3 Example: Directory and File Operation Built-ins

Two useful functions that are not in awk are chdir() (so that an awk program can change
its directory) and stat() (so that an awk program can gather information about a file).
This section implements these functions for gawk in an external extension library.

C.3.3.1 Using chdir() and stat()

This section shows how to use the new functions at the awk level once they’ve been integrated
into the running gawk interpreter. Using chdir() is very straightforward. It takes one
argument, the new directory to change to:

Appendix C: Implementation Notes 337

...

newdir = "/home/arnold/funstuff"

ret = chdir(newdir)

if (ret < 0) {

printf("could not change to %s: %s\n",

newdir, ERRNO) > "/dev/stderr"

exit 1

}

...

The return value is negative if the chdir failed, and ERRNO (see Section 7.5 [Built-in
Variables], page 128) is set to a string indicating the error.

Using stat() is a bit more complicated. The C stat() function fills in a structure
that has a fair amount of information. The right way to model this in awk is to fill in an
associative array with the appropriate information:

file = "/home/arnold/.profile"

fdata[1] = "x" # force ‘fdata’ to be an array

ret = stat(file, fdata)

if (ret < 0) {

printf("could not stat %s: %s\n",

file, ERRNO) > "/dev/stderr"

exit 1

}

printf("size of %s is %d bytes\n", file, fdata["size"])

The stat() function always clears the data array, even if the stat() fails. It fills in the
following elements:

"name" The name of the file that was stat()’ed.

"dev"

"ino" The file’s device and inode numbers, respectively.

"mode" The file’s mode, as a numeric value. This includes both the file’s type and its
permissions.

"nlink" The number of hard links (directory entries) the file has.

"uid"

"gid" The numeric user and group ID numbers of the file’s owner.

"size" The size in bytes of the file.

"blocks" The number of disk blocks the file actually occupies. This may not be a function
of the file’s size if the file has holes.

"atime"

"mtime"

"ctime" The file’s last access, modification, and inode update times, respectively.
These are numeric timestamps, suitable for formatting with strftime() (see
Section 9.1 [Built-in Functions], page 151).

"pmode" The file’s “printable mode.” This is a string representation of the file’s type and
permissions, such as what is produced by ‘ls -l’—for example, "drwxr-xr-x".

338 GAWK: Effective AWK Programming

"type" A printable string representation of the file’s type. The value is one of the
following:

"blockdev"

"chardev"

The file is a block or character device (“special file”).

"directory"

The file is a directory.

"fifo" The file is a named-pipe (also known as a FIFO).

"file" The file is just a regular file.

"socket" The file is an AF_UNIX (“Unix domain”) socket in the filesystem.

"symlink"

The file is a symbolic link.

Several additional elements may be present depending upon the operating system and
the type of the file. You can test for them in your awk program by using the in operator
(see Section 8.1.2 [Referring to an Array Element], page 138):

"blksize"

The preferred block size for I/O to the file. This field is not present on all
POSIX-like systems in the C stat structure.

"linkval"

If the file is a symbolic link, this element is the name of the file the link points
to (i.e., the value of the link).

"rdev"

"major"

"minor" If the file is a block or character device file, then these values represent the
numeric device number and the major and minor components of that number,
respectively.

C.3.3.2 C Code for chdir() and stat()

Here is the C code for these extensions. They were written for GNU/Linux. The code needs
some more work for complete portability to other POSIX-compliant systems:1

#include "awk.h"

#include <sys/sysmacros.h>

int plugin_is_GPL_compatible;

/* do_chdir --- provide dynamically loaded chdir() builtin for gawk */

static NODE *

1 This version is edited slightly for presentation. See extension/filefuncs.c in the gawk distribution for
the complete version.

Appendix C: Implementation Notes 339

do_chdir(int nargs)

{

NODE *newdir;

int ret = -1;

if (do_lint && get_curfunc_arg_count() != 1)

lintwarn("chdir: called with incorrect number of arguments");

newdir = get_scalar_argument(0, FALSE);

The file includes the "awk.h" header file for definitions for the gawk internals. It includes
<sys/sysmacros.h> for access to the major() and minor() macros.

By convention, for an awk function foo, the function that implements it is called ‘do_foo’.
The function should take a ‘int’ argument, usually called nargs, that represents the number
of defined arguments for the function. The newdir variable represents the new directory
to change to, retrieved with get_scalar_argument(). Note that the first argument is
numbered zero.

This code actually accomplishes the chdir(). It first forces the argument to be a string
and passes the string value to the chdir() system call. If the chdir() fails, ERRNO is
updated.

(void) force_string(newdir);

ret = chdir(newdir->stptr);

if (ret < 0)

update_ERRNO();

Finally, the function returns the return value to the awk level:

return make_number((AWKNUM) ret);

}

The stat() built-in is more involved. First comes a function that turns a numeric mode
into a printable representation (e.g., 644 becomes ‘-rw-r--r--’). This is omitted here for
brevity:

/* format_mode --- turn a stat mode field into something readable */

static char *

format_mode(unsigned long fmode)

{

...

}

Next comes the do_stat() function. It starts with variable declarations and argument
checking:

/* do_stat --- provide a stat() function for gawk */

static NODE *

do_stat(int nargs)

{

NODE *file, *array, *tmp;

struct stat sbuf;

340 GAWK: Effective AWK Programming

int ret;

NODE **aptr;

char *pmode; /* printable mode */

char *type = "unknown";

if (do_lint && get_curfunc_arg_count() > 2)

lintwarn("stat: called with too many arguments");

Then comes the actual work. First, the function gets the arguments. Then, it always
clears the array. The code use lstat() (instead of stat()) to get the file information, in
case the file is a symbolic link. If there’s an error, it sets ERRNO and returns:

/* file is first arg, array to hold results is second */

file = get_scalar_argument(0, FALSE);

array = get_array_argument(1, FALSE);

/* empty out the array */

assoc_clear(array);

/* lstat the file, if error, set ERRNO and return */

(void) force_string(file);

ret = lstat(file->stptr, & sbuf);

if (ret < 0) {

update_ERRNO();

return make_number((AWKNUM) ret);

}

Now comes the tedious part: filling in the array. Only a few of the calls are shown here,
since they all follow the same pattern:

/* fill in the array */

aptr = assoc_lookup(array, tmp = make_string("name", 4), FALSE);

*aptr = dupnode(file);

unref(tmp);

aptr = assoc_lookup(array, tmp = make_string("mode", 4), FALSE);

*aptr = make_number((AWKNUM) sbuf.st_mode);

unref(tmp);

aptr = assoc_lookup(array, tmp = make_string("pmode", 5), FALSE);

pmode = format_mode(sbuf.st_mode);

*aptr = make_string(pmode, strlen(pmode));

unref(tmp);

When done, return the lstat() return value:

return make_number((AWKNUM) ret);

}

Finally, it’s necessary to provide the “glue” that loads the new function(s) into gawk.
By convention, each library has a routine named dlload() that does the job:

Appendix C: Implementation Notes 341

/* dlload --- load new builtins in this library */

NODE *

dlload(NODE *tree, void *dl)

{

make_builtin("chdir", do_chdir, 1);

make_builtin("stat", do_stat, 2);

return make_number((AWKNUM) 0);

}

And that’s it! As an exercise, consider adding functions to implement system calls such
as chown(), chmod(), and umask().

C.3.3.3 Integrating the Extensions

Now that the code is written, it must be possible to add it at runtime to the running gawk

interpreter. First, the code must be compiled. Assuming that the functions are in a file
named filefuncs.c, and idir is the location of the gawk include files, the following steps
create a GNU/Linux shared library:

$ gcc -fPIC -shared -DHAVE_CONFIG_H -c -O -g -Iidir filefuncs.c

$ ld -o filefuncs.so -shared filefuncs.o

Once the library exists, it is loaded by calling the extension() built-in function. This
function takes two arguments: the name of the library to load and the name of a function
to call when the library is first loaded. This function adds the new functions to gawk. It
returns the value returned by the initialization function within the shared library:

file testff.awk

BEGIN {

extension("./filefuncs.so", "dlload")

chdir(".") # no-op

data[1] = 1 # force ‘data’ to be an array

print "Info for testff.awk"

ret = stat("testff.awk", data)

print "ret =", ret

for (i in data)

printf "data[\"%s\"] = %s\n", i, data[i]

print "testff.awk modified:",

strftime("%m %d %y %H:%M:%S", data["mtime"])

print "\nInfo for JUNK"

ret = stat("JUNK", data)

print "ret =", ret

for (i in data)

printf "data[\"%s\"] = %s\n", i, data[i]

print "JUNK modified:", strftime("%m %d %y %H:%M:%S", data["mtime"])

}

Here are the results of running the program:

342 GAWK: Effective AWK Programming

$ gawk -f testff.awk

a Info for testff.awk

a ret = 0

a data["size"] = 607

a data["ino"] = 14945891

a data["name"] = testff.awk

a data["pmode"] = -rw-rw-r--

a data["nlink"] = 1

a data["atime"] = 1293993369

a data["mtime"] = 1288520752

a data["mode"] = 33204

a data["blksize"] = 4096

a data["dev"] = 2054

a data["type"] = file

a data["gid"] = 500

a data["uid"] = 500

a data["blocks"] = 8

a data["ctime"] = 1290113572

a testff.awk modified: 10 31 10 12:25:52

a
a Info for JUNK

a ret = -1

a JUNK modified: 01 01 70 02:00:00

C.4 Probable Future Extensions

AWK is a language similar to PERL, only considerably more elegant.
Arnold Robbins

Hey!
Larry Wall

This section briefly lists extensions and possible improvements that indicate the direc-
tions we are currently considering for gawk. The file FUTURES in the gawk distribution lists
these extensions as well.

Following is a list of probable future changes visible at the awk language level:

Loadable module interface
It is not clear that the awk-level interface to the modules facility is as good as it
should be. The interface needs to be redesigned, particularly taking namespace
issues into account, as well as possibly including issues such as library search
path order and versioning.

RECLEN variable for fixed-length records
Along with FIELDWIDTHS, this would speed up the processing of fixed-length
records. PROCINFO["RS"] would be "RS" or "RECLEN", depending upon which
kind of record processing is in effect.

Databases It may be possible to map a GDBM/NDBM/SDBM file into an awk array.

Appendix C: Implementation Notes 343

More lint warnings
There are more things that could be checked for portability.

Following is a list of probable improvements that will make gawk’s source code easier to
work with:

Loadable module mechanics
The current extension mechanism works (see Section C.3 [Adding New Built-
in Functions to gawk], page 332), but is rather primitive. It requires a fair
amount of manual work to create and integrate a loadable module. Nor is the
current mechanism as portable as might be desired. The GNU libtool package
provides a number of features that would make using loadable modules much
easier. gawk should be changed to use libtool.

Loadable module internals
The API to its internals that gawk “exports” should be revised. Too many
things are needlessly exposed. A new API should be designed and implemented
to make module writing easier.

Better array subscript management
gawk’s management of array subscript storage could use revamping, so that
using the same value to index multiple arrays only stores one copy of the index
value.

Finally, the programs in the test suite could use documenting in this book.

See Section C.2 [Making Additions to gawk], page 329, if you are interested in tackling
any of these projects.

Appendix D: Basic Programming Concepts 345

Appendix D Basic Programming Concepts

This appendix attempts to define some of the basic concepts and terms that are used
throughout the rest of this book. As this book is specifically about awk, and not about
computer programming in general, the coverage here is by necessity fairly cursory and
simplistic. (If you need more background, there are many other introductory texts that you
should refer to instead.)

D.1 What a Program Does

At the most basic level, the job of a program is to process some input data and produce
results.

ResultsData Program

The “program” in the figure can be either a compiled program1 (such as ls), or it may
be interpreted. In the latter case, a machine-executable program such as awk reads your
program, and then uses the instructions in your program to process the data.

When you write a program, it usually consists of the following, very basic set of steps:

More

Data

 ?

No

Yes

Initialization Clean Up

Process

Initialization
These are the things you do before actually starting to process data, such as
checking arguments, initializing any data you need to work with, and so on.
This step corresponds to awk’s BEGIN rule (see Section 7.1.4 [The BEGIN and
END Special Patterns], page 116).

If you were baking a cake, this might consist of laying out all the mixing bowls
and the baking pan, and making sure you have all the ingredients that you
need.

1 Compiled programs are typically written in lower-level languages such as C, C++, or Ada, and then
translated, or compiled, into a form that the computer can execute directly.

346 GAWK: Effective AWK Programming

Processing This is where the actual work is done. Your program reads data, one logical
chunk at a time, and processes it as appropriate.

In most programming languages, you have to manually manage the reading
of data, checking to see if there is more each time you read a chunk. awk’s
pattern-action paradigm (see Chapter 1 [Getting Started with awk], page 11)
handles the mechanics of this for you.

In baking a cake, the processing corresponds to the actual labor: breaking eggs,
mixing the flour, water, and other ingredients, and then putting the cake into
the oven.

Clean Up Once you’ve processed all the data, you may have things you need to do before
exiting. This step corresponds to awk’s END rule (see Section 7.1.4 [The BEGIN

and END Special Patterns], page 116).

After the cake comes out of the oven, you still have to wrap it in plastic wrap
to keep anyone from tasting it, as well as wash the mixing bowls and utensils.

An algorithm is a detailed set of instructions necessary to accomplish a task, or process
data. It is much the same as a recipe for baking a cake. Programs implement algorithms.
Often, it is up to you to design the algorithm and implement it, simultaneously.

The “logical chunks” we talked about previously are called records, similar to the records
a company keeps on employees, a school keeps for students, or a doctor keeps for patients.
Each record has many component parts, such as first and last names, date of birth, address,
and so on. The component parts are referred to as the fields of the record.

The act of reading data is termed input, and that of generating results, not too surpris-
ingly, is termed output. They are often referred to together as “input/output,” and even
more often, as “I/O” for short. (You will also see “input” and “output” used as verbs.)

awk manages the reading of data for you, as well as the breaking it up into records and
fields. Your program’s job is to tell awk what to do with the data. You do this by describing
patterns in the data to look for, and actions to execute when those patterns are seen. This
data-driven nature of awk programs usually makes them both easier to write and easier to
read.

D.2 Data Values in a Computer

In a program, you keep track of information and values in things called variables. A variable
is just a name for a given value, such as first_name, last_name, address, and so on. awk
has several predefined variables, and it has special names to refer to the current input record
and the fields of the record. You may also group multiple associated values under one name,
as an array.

Data, particularly in awk, consists of either numeric values, such as 42 or 3.1415927,
or string values. String values are essentially anything that’s not a number, such as a
name. Strings are sometimes referred to as character data, since they store the individual
characters that comprise them. Individual variables, as well as numeric and string variables,
are referred to as scalar values. Groups of values, such as arrays, are not scalars.

Within computers, there are two kinds of numeric values: integers and floating-point.
In school, integer values were referred to as “whole” numbers—that is, numbers without
any fractional part, such as 1, 42, or −17. The advantage to integer numbers is that they

Appendix D: Basic Programming Concepts 347

represent values exactly. The disadvantage is that their range is limited. On most systems,
this range is −2,147,483,648 to 2,147,483,647. However, many systems now support a range
from −9,223,372,036,854,775,808 to 9,223,372,036,854,775,807.

Integer values come in two flavors: signed and unsigned. Signed values may be negative
or positive, with the range of values just described. Unsigned values are always positive. On
most systems, the range is from 0 to 4,294,967,295. However, many systems now support a
range from 0 to 18,446,744,073,709,551,615.

Floating-point numbers represent what are called “real” numbers; i.e., those that do have
a fractional part, such as 3.1415927. The advantage to floating-point numbers is that they
can represent a much larger range of values. The disadvantage is that there are numbers
that they cannot represent exactly. awk uses double precision floating-point numbers, which
can hold more digits than single precision floating-point numbers. Floating-point issues are
discussed more fully in Section D.3 [Floating-Point Number Caveats], page 347.

At the very lowest level, computers store values as groups of binary digits, or bits.
Modern computers group bits into groups of eight, called bytes. Advanced applications
sometimes have to manipulate bits directly, and gawk provides functions for doing so.

While you are probably used to the idea of a number without a value (i.e., zero), it takes
a bit more getting used to the idea of zero-length character data. Nevertheless, such a thing
exists. It is called the null string. The null string is character data that has no value. In
other words, it is empty. It is written in awk programs like this: "".

Humans are used to working in decimal; i.e., base 10. In base 10, numbers go from 0 to
9, and then “roll over” into the next column. (Remember grade school? 42 is 4 times 10
plus 2.)

There are other number bases though. Computers commonly use base 2 or binary, base
8 or octal, and base 16 or hexadecimal. In binary, each column represents two times the
value in the column to its right. Each column may contain either a 0 or a 1. Thus, binary
1010 represents 1 times 8, plus 0 times 4, plus 1 times 2, plus 0 times 1, or decimal 10. Octal
and hexadecimal are discussed more in Section 6.1.1.2 [Octal and Hexadecimal Numbers],
page 91.

Programs are written in programming languages. Hundreds, if not thousands, of pro-
gramming languages exist. One of the most popular is the C programming language. The
C language had a very strong influence on the design of the awk language.

There have been several versions of C. The first is often referred to as “K&R” C, after
the initials of Brian Kernighan and Dennis Ritchie, the authors of the first book on C.
(Dennis Ritchie created the language, and Brian Kernighan was one of the creators of awk.)

In the mid-1980s, an effort began to produce an international standard for C. This work
culminated in 1989, with the production of the ANSI standard for C. This standard became
an ISO standard in 1990. In 1999, a revised ISO C standard was approved and released.
Where it makes sense, POSIX awk is compatible with 1999 ISO C.

D.3 Floating-Point Number Caveats

As mentioned earlier, floating-point numbers represent what are called “real” numbers,
i.e., those that have a fractional part. awk uses double precision floating-point numbers to
represent all numeric values. This section describes some of the issues involved in using
floating-point numbers.

348 GAWK: Effective AWK Programming

There is a very nice paper on floating-point arithmetic by David Goldberg, “What Ev-
ery Computer Scientist Should Know About Floating-point Arithmetic,” ACM Computing
Surveys 23, 1 (1991-03), 5-48. This is worth reading if you are interested in the details, but
it does require a background in computer science.

D.3.1 The String Value Can Lie

Internally, awk keeps both the numeric value (double precision floating-point) and the
string value for a variable. Separately, awk keeps track of what type the variable has
(see Section 6.3.2 [Variable Typing and Comparison Expressions], page 104), which plays a
role in how variables are used in comparisons.

It is important to note that the string value for a number may not reflect the full value (all
the digits) that the numeric value actually contains. The following program (values.awk)
illustrates this:

{

sum = $1 + $2

see it for what it is

printf("sum = %.12g\n", sum)

use CONVFMT

a = "<" sum ">"

print "a =", a

use OFMT

print "sum =", sum

}

This program shows the full value of the sum of $1 and $2 using printf, and then prints
the string values obtained from both automatic conversion (via CONVFMT) and from printing
(via OFMT).

Here is what happens when the program is run:

$ echo 3.654321 1.2345678 | awk -f values.awk

a sum = 4.8888888

a a = <4.88889>

a sum = 4.88889

This makes it clear that the full numeric value is different from what the default string
representations show.

CONVFMT’s default value is "%.6g", which yields a value with at least six significant digits.
For some applications, you might want to change it to specify more precision. On most
modern machines, most of the time, 17 digits is enough to capture a floating-point number’s
value exactly.2

D.3.2 Floating Point Numbers Are Not Abstract Numbers

Unlike numbers in the abstract sense (such as what you studied in high school or college
math), numbers stored in computers are limited in certain ways. They cannot represent
an infinite number of digits, nor can they always represent things exactly. In particular,
floating-point numbers cannot always represent values exactly. Here is an example:

2 Pathological cases can require up to 752 digits (!), but we doubt that you need to worry about this.

http://www.validlab.com/goldberg/paper.pdf

Appendix D: Basic Programming Concepts 349

$ awk ’{ printf("%010d\n", $1 * 100) }’

515.79

a 0000051579

515.80

a 0000051579

515.81

a 0000051580

515.82

a 0000051582

Ctrl-d

This shows that some values can be represented exactly, whereas others are only approx-
imated. This is not a “bug” in awk, but simply an artifact of how computers represent
numbers.

Another peculiarity of floating-point numbers on modern systems is that they often have
more than one representation for the number zero! In particular, it is possible to represent
“minus zero” as well as regular, or “positive” zero.

This example shows that negative and positive zero are distinct values when stored
internally, but that they are in fact equal to each other, as well as to “regular” zero:

$ gawk ’BEGIN { mz = -0 ; pz = 0

> printf "-0 = %g, +0 = %g, (-0 == +0) -> %d\n", mz, pz, mz == pz

> printf "mz == 0 -> %d, pz == 0 -> %d\n", mz == 0, pz == 0

> }’

a -0 = -0, +0 = 0, (-0 == +0) -> 1

a mz == 0 -> 1, pz == 0 -> 1

It helps to keep this in mind should you process numeric data that contains negative
zero values; the fact that the zero is negative is noted and can affect comparisons.

D.3.3 Standards Versus Existing Practice

Historically, awk has converted any non-numeric looking string to the numeric value zero,
when required. Furthermore, the original definition of the language and the original POSIX
standards specified that awk only understands decimal numbers (base 10), and not octal
(base 8) or hexadecimal numbers (base 16).

Changes in the language of the 2001 and 2004 POSIX standard can be interpreted to
imply that awk should support additional features. These features are:

• Interpretation of floating point data values specified in hexadecimal notation
(‘0xDEADBEEF’). (Note: data values, not source code constants.)

• Support for the special IEEE 754 floating point values “Not A Number” (NaN), positive
Infinity (“inf”) and negative Infinity (“−inf”). In particular, the format for these values
is as specified by the ISO 1999 C standard, which ignores case and can allow machine-
dependent additional characters after the ‘nan’ and allow either ‘inf’ or ‘infinity’.

The first problem is that both of these are clear changes to historical practice:

• The gawk maintainer feels that supporting hexadecimal floating point values, in par-
ticular, is ugly, and was never intended by the original designers to be part of the
language.

350 GAWK: Effective AWK Programming

• Allowing completely alphabetic strings to have valid numeric values is also a very severe
departure from historical practice.

The second problem is that the gawk maintainer feels that this interpretation of the
standard, which requires a certain amount of “language lawyering” to arrive at in the first
place, was not even intended by the standard developers. In other words, “we see how you
got where you are, but we don’t think that that’s where you want to be.”

The 2008 POSIX standard added explicit wording to allow, but not require, that awk

support hexadecimal floating point values and special values for “Not A Number” and
infinity.

Although the gawk maintainer continues to feel that providing those features is inad-
visable, nevertheless, on systems that support IEEE floating point, it seems reasonable to
provide some way to support NaN and Infinity values. The solution implemented in gawk

is as follows:

• With the --posix command-line option, gawk becomes “hands off.” String values are
passed directly to the system library’s strtod() function, and if it successfully returns
a numeric value, that is what’s used.3 By definition, the results are not portable across
different systems. They are also a little surprising:

$ echo nanny | gawk --posix ’{ print $1 + 0 }’

a nan

$ echo 0xDeadBeef | gawk --posix ’{ print $1 + 0 }’

a 3735928559

• Without --posix, gawk interprets the four strings ‘+inf’, ‘-inf’, ‘+nan’, and ‘-nan’
specially, producing the corresponding special numeric values. The leading sign acts
a signal to gawk (and the user) that the value is really numeric. Hexadecimal float-
ing point is not supported (unless you also use --non-decimal-data, which is not
recommended). For example:

$ echo nanny | gawk ’{ print $1 + 0 }’

a 0

$ echo +nan | gawk ’{ print $1 + 0 }’

a nan

$ echo 0xDeadBeef | gawk ’{ print $1 + 0 }’

a 0

gawk does ignore case in the four special values. Thus ‘+nan’ and ‘+NaN’ are the same.

3 You asked for it, you got it.

Glossary 351

Glossary

Action A series of awk statements attached to a rule. If the rule’s pattern matches
an input record, awk executes the rule’s action. Actions are always enclosed in
curly braces. (See Section 7.3 [Actions], page 119.)

Amazing awk Assembler
Henry Spencer at the University of Toronto wrote a retargetable assembler
completely as sed and awk scripts. It is thousands of lines long, including
machine descriptions for several eight-bit microcomputers. It is a good example
of a program that would have been better written in another language. You
can get it from http://awk.info/?awk100/aaa.

Ada A programming language originally defined by the U.S. Department of Defense
for embedded programming. It was designed to enforce good Software Engi-
neering practices.

Amazingly Workable Formatter (awf)
Henry Spencer at the University of Toronto wrote a formatter that accepts a
large subset of the ‘nroff -ms’ and ‘nroff -man’ formatting commands, using
awk and sh. It is available from http://awk.info/?tools/awf.

Anchor The regexp metacharacters ‘^’ and ‘$’, which force the match to the beginning
or end of the string, respectively.

ANSI The American National Standards Institute. This organization produces many
standards, among them the standards for the C and C++ programming lan-
guages. These standards often become international standards as well. See also
“ISO.”

Array A grouping of multiple values under the same name. Most languages just pro-
vide sequential arrays. awk provides associative arrays.

Assertion A statement in a program that a condition is true at this point in the program.
Useful for reasoning about how a program is supposed to behave.

Assignment
An awk expression that changes the value of some awk variable or data object.
An object that you can assign to is called an lvalue. The assigned values are
called rvalues. See Section 6.2.3 [Assignment Expressions], page 100.

Associative Array
Arrays in which the indices may be numbers or strings, not just sequential
integers in a fixed range.

awk Language
The language in which awk programs are written.

awk Program
An awk program consists of a series of patterns and actions, collectively known
as rules. For each input record given to the program, the program’s rules are
all processed in turn. awk programs may also contain function definitions.

awk Script Another name for an awk program.

http://awk.info/?awk100/aaa
http://awk.info/?tools/awf

352 GAWK: Effective AWK Programming

Bash The GNU version of the standard shell (the Bourne-Again SHell). See also
“Bourne Shell.”

BBS See “Bulletin Board System.”

Bit Short for “Binary Digit.” All values in computer memory ultimately reduce
to binary digits: values that are either zero or one. Groups of bits may be
interpreted differently—as integers, floating-point numbers, character data, ad-
dresses of other memory objects, or other data. awk lets you work with floating-
point numbers and strings. gawk lets you manipulate bit values with the built-in
functions described in Section 9.1.6 [Bit-Manipulation Functions], page 172.

Computers are often defined by how many bits they use to represent integer
values. Typical systems are 32-bit systems, but 64-bit systems are becoming
increasingly popular, and 16-bit systems have essentially disappeared.

Boolean Expression
Named after the English mathematician Boole. See also “Logical Expression.”

Bourne Shell
The standard shell (/bin/sh) on Unix and Unix-like systems, originally writ-
ten by Steven R. Bourne. Many shells (Bash, ksh, pdksh, zsh) are generally
upwardly compatible with the Bourne shell.

Built-in Function
The awk language provides built-in functions that perform various numerical,
I/O-related, and string computations. Examples are sqrt() (for the square
root of a number) and substr() (for a substring of a string). gawk provides
functions for timestamp management, bit manipulation, array sorting, type
checking, and runtime string translation. (See Section 9.1 [Built-in Functions],
page 151.)

Built-in Variable
ARGC, ARGV, CONVFMT, ENVIRON, FILENAME, FNR, FS, NF, NR, OFMT, OFS, ORS,
RLENGTH, RSTART, RS, and SUBSEP are the variables that have special meaning
to awk. In addition, ARGIND, BINMODE, ERRNO, FIELDWIDTHS, FPAT, IGNORECASE,
LINT, PROCINFO, RT, and TEXTDOMAIN are the variables that have special mean-
ing to gawk. Changing some of them affects awk’s running environment. (See
Section 7.5 [Built-in Variables], page 128.)

Braces See “Curly Braces.”

Bulletin Board System
A computer system allowing users to log in and read and/or leave messages for
other users of the system, much like leaving paper notes on a bulletin board.

C The system programming language that most GNU software is written in. The
awk programming language has C-like syntax, and this book points out simi-
larities between awk and C when appropriate.

In general, gawk attempts to be as similar to the 1990 version of ISO C as makes
sense.

C++ A popular object-oriented programming language derived from C.

Glossary 353

Character Set
The set of numeric codes used by a computer system to represent the char-
acters (letters, numbers, punctuation, etc.) of a particular country or place.
The most common character set in use today is ASCII (American Standard
Code for Information Interchange). Many European countries use an extension
of ASCII known as ISO-8859-1 (ISO Latin-1). The Unicode character set is
becoming increasingly popular and standard, and is particularly widely used
on GNU/Linux systems.

CHEM A preprocessor for pic that reads descriptions of molecules and produces pic in-
put for drawing them. It was written in awk by Brian Kernighan and Jon Bent-
ley, and is available from http://netlib.sandia.gov/netlib/typesetting/

chem.gz.

Coprocess A subordinate program with which two-way communications is possible.

Compiler A program that translates human-readable source code into machine-executable
object code. The object code is then executed directly by the computer. See
also “Interpreter.”

Compound Statement
A series of awk statements, enclosed in curly braces. Compound statements
may be nested. (See Section 7.4 [Control Statements in Actions], page 120.)

Concatenation
Concatenating two strings means sticking them together, one after another,
producing a new string. For example, the string ‘foo’ concatenated with the
string ‘bar’ gives the string ‘foobar’. (See Section 6.2.2 [String Concatenation],
page 98.)

Conditional Expression
An expression using the ‘?:’ ternary operator, such as ‘expr1 ? expr2 : expr3’.
The expression expr1 is evaluated; if the result is true, the value of the whole
expression is the value of expr2; otherwise the value is expr3. In either case,
only one of expr2 and expr3 is evaluated. (See Section 6.3.4 [Conditional Ex-
pressions], page 109.)

Comparison Expression
A relation that is either true or false, such as ‘a < b’. Comparison expressions
are used in if, while, do, and for statements, and in patterns to select which
input records to process. (See Section 6.3.2 [Variable Typing and Comparison
Expressions], page 104.)

Curly Braces
The characters ‘{’ and ‘}’. Curly braces are used in awk for delimiting actions,
compound statements, and function bodies.

Dark Corner
An area in the language where specifications often were (or still are) not clear,
leading to unexpected or undesirable behavior. Such areas are marked in this
book with the picture of a flashlight in the margin and are indexed under the
heading “dark corner.”

http://www.unicode.org
http://netlib.sandia.gov/netlib/typesetting/chem.gz
http://netlib.sandia.gov/netlib/typesetting/chem.gz

354 GAWK: Effective AWK Programming

Data Driven
A description of awk programs, where you specify the data you are interested
in processing, and what to do when that data is seen.

Data Objects
These are numbers and strings of characters. Numbers are converted into strings
and vice versa, as needed. (See Section 6.1.4 [Conversion of Strings and Num-
bers], page 95.)

Deadlock The situation in which two communicating processes are each waiting for the
other to perform an action.

Debugger A program used to help developers remove “bugs” from (de-bug) their pro-
grams.

Double Precision
An internal representation of numbers that can have fractional parts. Double
precision numbers keep track of more digits than do single precision numbers,
but operations on them are sometimes more expensive. This is the way awk

stores numeric values. It is the C type double.

Dynamic Regular Expression
A dynamic regular expression is a regular expression written as an ordinary
expression. It could be a string constant, such as "foo", but it may also be an
expression whose value can vary. (See Section 3.8 [Using Dynamic Regexps],
page 47.)

Environment
A collection of strings, of the form name=val, that each program has available
to it. Users generally place values into the environment in order to provide in-
formation to various programs. Typical examples are the environment variables
HOME and PATH.

Empty String
See “Null String.”

Epoch The date used as the “beginning of time” for timestamps. Time values in
most systems are represented as seconds since the epoch, with library functions
available for converting these values into standard date and time formats.

The epoch on Unix and POSIX systems is 1970-01-01 00:00:00 UTC. See also
“GMT” and “UTC.”

Escape Sequences
A special sequence of characters used for describing nonprinting characters,
such as ‘\n’ for newline or ‘\033’ for the ASCII ESC (Escape) character. (See
Section 3.2 [Escape Sequences], page 38.)

Extension An additional feature or change to a programming language or utility not de-
fined by that language’s or utility’s standard. gawk has (too) many extensions
over POSIX awk.

FDL See “Free Documentation License.”

Glossary 355

Field When awk reads an input record, it splits the record into pieces separated by
whitespace (or by a separator regexp that you can change by setting the built-in
variable FS). Such pieces are called fields. If the pieces are of fixed length, you
can use the built-in variable FIELDWIDTHS to describe their lengths. If you wish
to specify the contents of fields instead of the field separator, you can use the
built-in variable FPAT to do so. (See Section 4.5 [Specifying How Fields Are
Separated], page 56, Section 4.6 [Reading Fixed-Width Data], page 61, and
Section 4.7 [Defining Fields By Content], page 63.)

Flag A variable whose truth value indicates the existence or nonexistence of some
condition.

Floating-Point Number
Often referred to in mathematical terms as a “rational” or real number, this is
just a number that can have a fractional part. See also “Double Precision” and
“Single Precision.”

Format Format strings are used to control the appearance of output in the strftime()
and sprintf() functions, and are used in the printf statement as well. Also,
data conversions from numbers to strings are controlled by the format strings
contained in the built-in variables CONVFMT and OFMT. (See Section 5.5.2
[Format-Control Letters], page 78.)

Free Documentation License
This document describes the terms under which this book is published and may
be copied. (See [GNU Free Documentation License], page 373.)

Function A specialized group of statements used to encapsulate general or program-
specific tasks. awk has a number of built-in functions, and also allows you
to define your own. (See Chapter 9 [Functions], page 151.)

FSF See “Free Software Foundation.”

Free Software Foundation
A nonprofit organization dedicated to the production and distribution of freely
distributable software. It was founded by Richard M. Stallman, the author
of the original Emacs editor. GNU Emacs is the most widely used version of
Emacs today.

gawk The GNU implementation of awk.

General Public License
This document describes the terms under which gawk and its source code may
be distributed. (See [GNU General Public License], page 361.)

GMT “Greenwich Mean Time.” This is the old term for UTC. It is the time of day
used internally for Unix and POSIX systems. See also “Epoch” and “UTC.”

GNU “GNU’s not Unix”. An on-going project of the Free Software Foundation to
create a complete, freely distributable, POSIX-compliant computing environ-
ment.

356 GAWK: Effective AWK Programming

GNU/Linux
A variant of the GNU system using the Linux kernel, instead of the Free Soft-
ware Foundation’s Hurd kernel. The Linux kernel is a stable, efficient, full-
featured clone of Unix that has been ported to a variety of architectures. It is
most popular on PC-class systems, but runs well on a variety of other systems
too. The Linux kernel source code is available under the terms of the GNU
General Public License, which is perhaps its most important aspect.

GPL See “General Public License.”

Hexadecimal
Base 16 notation, where the digits are 0–9 and A–F, with ‘A’ representing 10, ‘B’
representing 11, and so on, up to ‘F’ for 15. Hexadecimal numbers are written
in C using a leading ‘0x’, to indicate their base. Thus, 0x12 is 18 (1 times 16
plus 2). See Section 6.1.1.2 [Octal and Hexadecimal Numbers], page 91.

I/O Abbreviation for “Input/Output,” the act of moving data into and/or out of a
running program.

Input Record
A single chunk of data that is read in by awk. Usually, an awk input record
consists of one line of text. (See Section 4.1 [How Input Is Split into Records],
page 49.)

Integer A whole number, i.e., a number that does not have a fractional part.

Internationalization
The process of writing or modifying a program so that it can use multiple
languages without requiring further source code changes.

Interpreter
A program that reads human-readable source code directly, and uses the in-
structions in it to process data and produce results. awk is typically (but not
always) implemented as an interpreter. See also “Compiler.”

Interval Expression
A component of a regular expression that lets you specify repeated matches of
some part of the regexp. Interval expressions were not originally available in
awk programs.

ISO The International Organization for Standardization. This organization pro-
duces international standards for many things, including programming lan-
guages, such as C and C++. In the computer arena, important standards like
those for C, C++, and POSIX become both American national and ISO inter-
national standards simultaneously. This book refers to Standard C as “ISO C”
throughout. See the ISO website for more information about the name of the
organization and its language-independent three-letter acronym.

Java A modern programming language originally developed by Sun Microsystems
(now Oracle) supporting Object-Oriented programming. Although usually im-
plemented by compiling to the instructions for a standard virtual machine (the
JVM), the language can be compiled to native code.

http://www.iso.org/iso/home/about.htm

Glossary 357

Keyword In the awk language, a keyword is a word that has special meaning. Keywords
are reserved and may not be used as variable names.

gawk’s keywords are: BEGIN, BEGINFILE, END, ENDFILE, break, case, continue,
default delete, do...while, else, exit, for...in, for, function, func, if,
nextfile, next, switch, and while.

Lesser General Public License
This document describes the terms under which binary library archives or
shared objects, and their source code may be distributed.

Linux See “GNU/Linux.”

LGPL See “Lesser General Public License.”

Localization
The process of providing the data necessary for an internationalized program
to work in a particular language.

Logical Expression
An expression using the operators for logic, AND, OR, and NOT, written ‘&&’,
‘||’, and ‘!’ in awk. Often called Boolean expressions, after the mathematician
who pioneered this kind of mathematical logic.

Lvalue An expression that can appear on the left side of an assignment operator. In
most languages, lvalues can be variables or array elements. In awk, a field
designator can also be used as an lvalue.

Matching The act of testing a string against a regular expression. If the regexp describes
the contents of the string, it is said to match it.

Metacharacters
Characters used within a regexp that do not stand for themselves. Instead,
they denote regular expression operations, such as repetition, grouping, or al-
ternation.

No-op An operation that does nothing.

Null String
A string with no characters in it. It is represented explicitly in awk programs
by placing two double quote characters next to each other (""). It can appear
in input data by having two successive occurrences of the field separator appear
next to each other.

Number A numeric-valued data object. Modern awk implementations use double pre-
cision floating-point to represent numbers. Ancient awk implementations used
single precision floating-point.

Octal Base-eight notation, where the digits are 0–7. Octal numbers are written in C
using a leading ‘0’, to indicate their base. Thus, 013 is 11 (one times 8 plus 3).
See Section 6.1.1.2 [Octal and Hexadecimal Numbers], page 91.

P1003.1, P1003.2
See “POSIX.”

358 GAWK: Effective AWK Programming

Pattern Patterns tell awk which input records are interesting to which rules.

A pattern is an arbitrary conditional expression against which input is tested.
If the condition is satisfied, the pattern is said to match the input record. A
typical pattern might compare the input record against a regular expression.
(See Section 7.1 [Pattern Elements], page 113.)

POSIX The name for a series of standards that specify a Portable Operating System
interface. The “IX” denotes the Unix heritage of these standards. The main
standard of interest for awk users is IEEE Standard for Information Technol-
ogy, Standard 1003.1-2008. The 2008 POSIX standard can be found online at
http://www.opengroup.org/onlinepubs/9699919799/.

Precedence
The order in which operations are performed when operators are used without
explicit parentheses.

Private Variables and/or functions that are meant for use exclusively by library func-
tions and not for the main awk program. Special care must be taken when
naming such variables and functions. (See Section 12.1 [Naming Library Func-
tion Global Variables], page 213.)

Range (of input lines)
A sequence of consecutive lines from the input file(s). A pattern can specify
ranges of input lines for awk to process or it can specify single lines. (See
Section 7.1 [Pattern Elements], page 113.)

Recursion When a function calls itself, either directly or indirectly. As long as this is not
clear, refer to the entry for “recursion.” If this is clear, stop, and proceed to
the next entry.

Redirection
Redirection means performing input from something other than the standard
input stream, or performing output to something other than the standard out-
put stream.

You can redirect input to the getline statement using the ‘<’, ‘|’, and ‘|&’
operators. You can redirect the output of the print and printf statements to
a file or a system command, using the ‘>’, ‘>>’, ‘|’, and ‘|&’ operators. (See
Section 4.9 [Explicit Input with getline], page 67, and Section 5.6 [Redirecting
Output of print and printf], page 83.)

Regexp See “Regular Expression.”

Regular Expression
A regular expression (“regexp” for short) is a pattern that denotes a set of
strings, possibly an infinite set. For example, the regular expression ‘R.*xp’
matches any string starting with the letter ‘R’ and ending with the letters ‘xp’.
In awk, regular expressions are used in patterns and in conditional expressions.
Regular expressions may contain escape sequences. (See Chapter 3 [Regular
Expressions], page 37.)

http://www.opengroup.org/onlinepubs/9699919799/

Glossary 359

Regular Expression Constant
A regular expression constant is a regular expression written within slashes, such
as /foo/. This regular expression is chosen when you write the awk program
and cannot be changed during its execution. (See Section 3.1 [How to Use
Regular Expressions], page 37.)

Rule A segment of an awk program that specifies how to process single input records.
A rule consists of a pattern and an action. awk reads an input record; then, for
each rule, if the input record satisfies the rule’s pattern, awk executes the rule’s
action. Otherwise, the rule does nothing for that input record.

Rvalue A value that can appear on the right side of an assignment operator. In awk,
essentially every expression has a value. These values are rvalues.

Scalar A single value, be it a number or a string. Regular variables are scalars; arrays
and functions are not.

Search Path
In gawk, a list of directories to search for awk program source files. In the shell,
a list of directories to search for executable programs.

Seed The initial value, or starting point, for a sequence of random numbers.

sed See “Stream Editor.”

Shell The command interpreter for Unix and POSIX-compliant systems. The shell
works both interactively, and as a programming language for batch files, or shell
scripts.

Short-Circuit
The nature of the awk logical operators ‘&&’ and ‘||’. If the value of the en-
tire expression is determinable from evaluating just the lefthand side of these
operators, the righthand side is not evaluated. (See Section 6.3.3 [Boolean
Expressions], page 107.)

Side Effect
A side effect occurs when an expression has an effect aside from merely pro-
ducing a value. Assignment expressions, increment and decrement expressions,
and function calls have side effects. (See Section 6.2.3 [Assignment Expressions],
page 100.)

Single Precision
An internal representation of numbers that can have fractional parts. Single
precision numbers keep track of fewer digits than do double precision numbers,
but operations on them are sometimes less expensive in terms of CPU time.
This is the type used by some very old versions of awk to store numeric values.
It is the C type float.

Space The character generated by hitting the space bar on the keyboard.

Special File
A file name interpreted internally by gawk, instead of being handed directly to
the underlying operating system—for example, /dev/stderr. (See Section 5.7
[Special File Names in gawk], page 86.)

360 GAWK: Effective AWK Programming

Stream Editor
A program that reads records from an input stream and processes them one or
more at a time. This is in contrast with batch programs, which may expect to
read their input files in entirety before starting to do anything, as well as with
interactive programs which require input from the user.

String A datum consisting of a sequence of characters, such as ‘I am a string’. Con-
stant strings are written with double quotes in the awk language and may
contain escape sequences. (See Section 3.2 [Escape Sequences], page 38.)

Tab The character generated by hitting the TAB key on the keyboard. It usually
expands to up to eight spaces upon output.

Text Domain
A unique name that identifies an application. Used for grouping messages that
are translated at runtime into the local language.

Timestamp
A value in the “seconds since the epoch” format used by Unix and POSIX
systems. Used for the gawk functions mktime(), strftime(), and systime().
See also “Epoch” and “UTC.”

Unix A computer operating system originally developed in the early 1970’s at AT&T
Bell Laboratories. It initially became popular in universities around the world
and later moved into commercial environments as a software development sys-
tem and network server system. There are many commercial versions of Unix,
as well as several work-alike systems whose source code is freely available (such
as GNU/Linux, NetBSD, FreeBSD, and OpenBSD).

UTC The accepted abbreviation for “Universal Coordinated Time.” This is standard
time in Greenwich, England, which is used as a reference time for day and date
calculations. See also “Epoch” and “GMT.”

Whitespace
A sequence of space, TAB, or newline characters occurring inside an input
record or a string.

http://www.netbsd.org
http://www.freebsd.org
http://www.openbsd.org

GNU General Public License 361

GNU General Public License

Version 3, 29 June 2007

Copyright c© 2007 Free Software Foundation, Inc. http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies of this
license document, but changing it is not allowed.

Preamble

The GNU General Public License is a free, copyleft license for software and other kinds of
works.

The licenses for most software and other practical works are designed to take away your
freedom to share and change the works. By contrast, the GNU General Public License is
intended to guarantee your freedom to share and change all versions of a program—to make
sure it remains free software for all its users. We, the Free Software Foundation, use the
GNU General Public License for most of our software; it applies also to any other work
released this way by its authors. You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General
Public Licenses are designed to make sure that you have the freedom to distribute copies
of free software (and charge for them if you wish), that you receive source code or can get
it if you want it, that you can change the software or use pieces of it in new free programs,
and that you know you can do these things.

To protect your rights, we need to prevent others from denying you these rights or asking
you to surrender the rights. Therefore, you have certain responsibilities if you distribute
copies of the software, or if you modify it: responsibilities to respect the freedom of others.

For example, if you distribute copies of such a program, whether gratis or for a fee, you
must pass on to the recipients the same freedoms that you received. You must make sure
that they, too, receive or can get the source code. And you must show them these terms so
they know their rights.

Developers that use the GNU GPL protect your rights with two steps: (1) assert copy-
right on the software, and (2) offer you this License giving you legal permission to copy,
distribute and/or modify it.

For the developers’ and authors’ protection, the GPL clearly explains that there is no
warranty for this free software. For both users’ and authors’ sake, the GPL requires that
modified versions be marked as changed, so that their problems will not be attributed
erroneously to authors of previous versions.

Some devices are designed to deny users access to install or run modified versions of the
software inside them, although the manufacturer can do so. This is fundamentally incom-
patible with the aim of protecting users’ freedom to change the software. The systematic
pattern of such abuse occurs in the area of products for individuals to use, which is pre-
cisely where it is most unacceptable. Therefore, we have designed this version of the GPL
to prohibit the practice for those products. If such problems arise substantially in other
domains, we stand ready to extend this provision to those domains in future versions of the
GPL, as needed to protect the freedom of users.

http://fsf.org/

362 GAWK: Effective AWK Programming

Finally, every program is threatened constantly by software patents. States should not
allow patents to restrict development and use of software on general-purpose computers, but
in those that do, we wish to avoid the special danger that patents applied to a free program
could make it effectively proprietary. To prevent this, the GPL assures that patents cannot
be used to render the program non-free.

The precise terms and conditions for copying, distribution and modification follow.

TERMS AND CONDITIONS

0. Definitions.

“This License” refers to version 3 of the GNU General Public License.

“Copyright” also means copyright-like laws that apply to other kinds of works, such as
semiconductor masks.

“The Program” refers to any copyrightable work licensed under this License. Each
licensee is addressed as “you”. “Licensees” and “recipients” may be individuals or
organizations.

To “modify” a work means to copy from or adapt all or part of the work in a fashion
requiring copyright permission, other than the making of an exact copy. The resulting
work is called a “modified version” of the earlier work or a work “based on” the earlier
work.

A “covered work” means either the unmodified Program or a work based on the Pro-
gram.

To “propagate” a work means to do anything with it that, without permission, would
make you directly or secondarily liable for infringement under applicable copyright law,
except executing it on a computer or modifying a private copy. Propagation includes
copying, distribution (with or without modification), making available to the public,
and in some countries other activities as well.

To “convey” a work means any kind of propagation that enables other parties to make
or receive copies. Mere interaction with a user through a computer network, with no
transfer of a copy, is not conveying.

An interactive user interface displays “Appropriate Legal Notices” to the extent that it
includes a convenient and prominently visible feature that (1) displays an appropriate
copyright notice, and (2) tells the user that there is no warranty for the work (except
to the extent that warranties are provided), that licensees may convey the work under
this License, and how to view a copy of this License. If the interface presents a list
of user commands or options, such as a menu, a prominent item in the list meets this
criterion.

1. Source Code.

The “source code” for a work means the preferred form of the work for making modi-
fications to it. “Object code” means any non-source form of a work.

A “Standard Interface” means an interface that either is an official standard defined
by a recognized standards body, or, in the case of interfaces specified for a particular
programming language, one that is widely used among developers working in that
language.

GNU General Public License 363

The “System Libraries” of an executable work include anything, other than the work as
a whole, that (a) is included in the normal form of packaging a Major Component, but
which is not part of that Major Component, and (b) serves only to enable use of the
work with that Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A “Major Component”,
in this context, means a major essential component (kernel, window system, and so
on) of the specific operating system (if any) on which the executable work runs, or a
compiler used to produce the work, or an object code interpreter used to run it.

The “Corresponding Source” for a work in object code form means all the source code
needed to generate, install, and (for an executable work) run the object code and to
modify the work, including scripts to control those activities. However, it does not
include the work’s System Libraries, or general-purpose tools or generally available
free programs which are used unmodified in performing those activities but which are
not part of the work. For example, Corresponding Source includes interface definition
files associated with source files for the work, and the source code for shared libraries
and dynamically linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those subprograms
and other parts of the work.

The Corresponding Source need not include anything that users can regenerate auto-
matically from other parts of the Corresponding Source.

The Corresponding Source for a work in source code form is that same work.

2. Basic Permissions.

All rights granted under this License are granted for the term of copyright on the
Program, and are irrevocable provided the stated conditions are met. This License ex-
plicitly affirms your unlimited permission to run the unmodified Program. The output
from running a covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your rights of fair use
or other equivalent, as provided by copyright law.

You may make, run and propagate covered works that you do not convey, without
conditions so long as your license otherwise remains in force. You may convey covered
works to others for the sole purpose of having them make modifications exclusively
for you, or provide you with facilities for running those works, provided that you
comply with the terms of this License in conveying all material for which you do not
control copyright. Those thus making or running the covered works for you must do
so exclusively on your behalf, under your direction and control, on terms that prohibit
them from making any copies of your copyrighted material outside their relationship
with you.

Conveying under any other circumstances is permitted solely under the conditions
stated below. Sublicensing is not allowed; section 10 makes it unnecessary.

3. Protecting Users’ Legal Rights From Anti-Circumvention Law.

No covered work shall be deemed part of an effective technological measure under
any applicable law fulfilling obligations under article 11 of the WIPO copyright treaty
adopted on 20 December 1996, or similar laws prohibiting or restricting circumvention
of such measures.

364 GAWK: Effective AWK Programming

When you convey a covered work, you waive any legal power to forbid circumvention of
technological measures to the extent such circumvention is effected by exercising rights
under this License with respect to the covered work, and you disclaim any intention
to limit operation or modification of the work as a means of enforcing, against the
work’s users, your or third parties’ legal rights to forbid circumvention of technological
measures.

4. Conveying Verbatim Copies.

You may convey verbatim copies of the Program’s source code as you receive it, in any
medium, provided that you conspicuously and appropriately publish on each copy an
appropriate copyright notice; keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code; keep intact all
notices of the absence of any warranty; and give all recipients a copy of this License
along with the Program.

You may charge any price or no price for each copy that you convey, and you may offer
support or warranty protection for a fee.

5. Conveying Modified Source Versions.

You may convey a work based on the Program, or the modifications to produce it from
the Program, in the form of source code under the terms of section 4, provided that
you also meet all of these conditions:

a. The work must carry prominent notices stating that you modified it, and giving a
relevant date.

b. The work must carry prominent notices stating that it is released under this Li-
cense and any conditions added under section 7. This requirement modifies the
requirement in section 4 to “keep intact all notices”.

c. You must license the entire work, as a whole, under this License to anyone who
comes into possession of a copy. This License will therefore apply, along with any
applicable section 7 additional terms, to the whole of the work, and all its parts,
regardless of how they are packaged. This License gives no permission to license
the work in any other way, but it does not invalidate such permission if you have
separately received it.

d. If the work has interactive user interfaces, each must display Appropriate Legal
Notices; however, if the Program has interactive interfaces that do not display
Appropriate Legal Notices, your work need not make them do so.

A compilation of a covered work with other separate and independent works, which
are not by their nature extensions of the covered work, and which are not combined
with it such as to form a larger program, in or on a volume of a storage or distribution
medium, is called an “aggregate” if the compilation and its resulting copyright are
not used to limit the access or legal rights of the compilation’s users beyond what the
individual works permit. Inclusion of a covered work in an aggregate does not cause
this License to apply to the other parts of the aggregate.

6. Conveying Non-Source Forms.

You may convey a covered work in object code form under the terms of sections 4 and
5, provided that you also convey the machine-readable Corresponding Source under
the terms of this License, in one of these ways:

GNU General Public License 365

a. Convey the object code in, or embodied in, a physical product (including a phys-
ical distribution medium), accompanied by the Corresponding Source fixed on a
durable physical medium customarily used for software interchange.

b. Convey the object code in, or embodied in, a physical product (including a physi-
cal distribution medium), accompanied by a written offer, valid for at least three
years and valid for as long as you offer spare parts or customer support for that
product model, to give anyone who possesses the object code either (1) a copy of
the Corresponding Source for all the software in the product that is covered by this
License, on a durable physical medium customarily used for software interchange,
for a price no more than your reasonable cost of physically performing this con-
veying of source, or (2) access to copy the Corresponding Source from a network
server at no charge.

c. Convey individual copies of the object code with a copy of the written offer to
provide the Corresponding Source. This alternative is allowed only occasionally
and noncommercially, and only if you received the object code with such an offer,
in accord with subsection 6b.

d. Convey the object code by offering access from a designated place (gratis or for
a charge), and offer equivalent access to the Corresponding Source in the same
way through the same place at no further charge. You need not require recipients
to copy the Corresponding Source along with the object code. If the place to
copy the object code is a network server, the Corresponding Source may be on
a different server (operated by you or a third party) that supports equivalent
copying facilities, provided you maintain clear directions next to the object code
saying where to find the Corresponding Source. Regardless of what server hosts
the Corresponding Source, you remain obligated to ensure that it is available for
as long as needed to satisfy these requirements.

e. Convey the object code using peer-to-peer transmission, provided you inform other
peers where the object code and Corresponding Source of the work are being offered
to the general public at no charge under subsection 6d.

A separable portion of the object code, whose source code is excluded from the Cor-
responding Source as a System Library, need not be included in conveying the object
code work.

A “User Product” is either (1) a “consumer product”, which means any tangible per-
sonal property which is normally used for personal, family, or household purposes, or
(2) anything designed or sold for incorporation into a dwelling. In determining whether
a product is a consumer product, doubtful cases shall be resolved in favor of coverage.
For a particular product received by a particular user, “normally used” refers to a
typical or common use of that class of product, regardless of the status of the par-
ticular user or of the way in which the particular user actually uses, or expects or is
expected to use, the product. A product is a consumer product regardless of whether
the product has substantial commercial, industrial or non-consumer uses, unless such
uses represent the only significant mode of use of the product.

“Installation Information” for a User Product means any methods, procedures, autho-
rization keys, or other information required to install and execute modified versions of a
covered work in that User Product from a modified version of its Corresponding Source.

366 GAWK: Effective AWK Programming

The information must suffice to ensure that the continued functioning of the modified
object code is in no case prevented or interfered with solely because modification has
been made.

If you convey an object code work under this section in, or with, or specifically for
use in, a User Product, and the conveying occurs as part of a transaction in which
the right of possession and use of the User Product is transferred to the recipient in
perpetuity or for a fixed term (regardless of how the transaction is characterized),
the Corresponding Source conveyed under this section must be accompanied by the
Installation Information. But this requirement does not apply if neither you nor any
third party retains the ability to install modified object code on the User Product (for
example, the work has been installed in ROM).

The requirement to provide Installation Information does not include a requirement
to continue to provide support service, warranty, or updates for a work that has been
modified or installed by the recipient, or for the User Product in which it has been
modified or installed. Access to a network may be denied when the modification itself
materially and adversely affects the operation of the network or violates the rules and
protocols for communication across the network.

Corresponding Source conveyed, and Installation Information provided, in accord with
this section must be in a format that is publicly documented (and with an implementa-
tion available to the public in source code form), and must require no special password
or key for unpacking, reading or copying.

7. Additional Terms.

“Additional permissions” are terms that supplement the terms of this License by mak-
ing exceptions from one or more of its conditions. Additional permissions that are
applicable to the entire Program shall be treated as though they were included in this
License, to the extent that they are valid under applicable law. If additional permis-
sions apply only to part of the Program, that part may be used separately under those
permissions, but the entire Program remains governed by this License without regard
to the additional permissions.

When you convey a copy of a covered work, you may at your option remove any
additional permissions from that copy, or from any part of it. (Additional permissions
may be written to require their own removal in certain cases when you modify the
work.) You may place additional permissions on material, added by you to a covered
work, for which you have or can give appropriate copyright permission.

Notwithstanding any other provision of this License, for material you add to a covered
work, you may (if authorized by the copyright holders of that material) supplement
the terms of this License with terms:

a. Disclaiming warranty or limiting liability differently from the terms of sections 15
and 16 of this License; or

b. Requiring preservation of specified reasonable legal notices or author attributions
in that material or in the Appropriate Legal Notices displayed by works containing
it; or

c. Prohibiting misrepresentation of the origin of that material, or requiring that mod-
ified versions of such material be marked in reasonable ways as different from the
original version; or

GNU General Public License 367

d. Limiting the use for publicity purposes of names of licensors or authors of the
material; or

e. Declining to grant rights under trademark law for use of some trade names, trade-
marks, or service marks; or

f. Requiring indemnification of licensors and authors of that material by anyone who
conveys the material (or modified versions of it) with contractual assumptions
of liability to the recipient, for any liability that these contractual assumptions
directly impose on those licensors and authors.

All other non-permissive additional terms are considered “further restrictions” within
the meaning of section 10. If the Program as you received it, or any part of it, con-
tains a notice stating that it is governed by this License along with a term that is a
further restriction, you may remove that term. If a license document contains a further
restriction but permits relicensing or conveying under this License, you may add to a
covered work material governed by the terms of that license document, provided that
the further restriction does not survive such relicensing or conveying.

If you add terms to a covered work in accord with this section, you must place, in the
relevant source files, a statement of the additional terms that apply to those files, or a
notice indicating where to find the applicable terms.

Additional terms, permissive or non-permissive, may be stated in the form of a sep-
arately written license, or stated as exceptions; the above requirements apply either
way.

8. Termination.

You may not propagate or modify a covered work except as expressly provided un-
der this License. Any attempt otherwise to propagate or modify it is void, and will
automatically terminate your rights under this License (including any patent licenses
granted under the third paragraph of section 11).

However, if you cease all violation of this License, then your license from a particular
copyright holder is reinstated (a) provisionally, unless and until the copyright holder
explicitly and finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means prior to 60 days
after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if
the copyright holder notifies you of the violation by some reasonable means, this is the
first time you have received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after your receipt of the
notice.

Termination of your rights under this section does not terminate the licenses of parties
who have received copies or rights from you under this License. If your rights have
been terminated and not permanently reinstated, you do not qualify to receive new
licenses for the same material under section 10.

9. Acceptance Not Required for Having Copies.

You are not required to accept this License in order to receive or run a copy of the
Program. Ancillary propagation of a covered work occurring solely as a consequence of
using peer-to-peer transmission to receive a copy likewise does not require acceptance.

368 GAWK: Effective AWK Programming

However, nothing other than this License grants you permission to propagate or modify
any covered work. These actions infringe copyright if you do not accept this License.
Therefore, by modifying or propagating a covered work, you indicate your acceptance
of this License to do so.

10. Automatic Licensing of Downstream Recipients.

Each time you convey a covered work, the recipient automatically receives a license
from the original licensors, to run, modify and propagate that work, subject to this
License. You are not responsible for enforcing compliance by third parties with this
License.

An “entity transaction” is a transaction transferring control of an organization, or
substantially all assets of one, or subdividing an organization, or merging organizations.
If propagation of a covered work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever licenses to the work
the party’s predecessor in interest had or could give under the previous paragraph, plus
a right to possession of the Corresponding Source of the work from the predecessor in
interest, if the predecessor has it or can get it with reasonable efforts.

You may not impose any further restrictions on the exercise of the rights granted or
affirmed under this License. For example, you may not impose a license fee, royalty, or
other charge for exercise of rights granted under this License, and you may not initiate
litigation (including a cross-claim or counterclaim in a lawsuit) alleging that any patent
claim is infringed by making, using, selling, offering for sale, or importing the Program
or any portion of it.

11. Patents.

A “contributor” is a copyright holder who authorizes use under this License of the
Program or a work on which the Program is based. The work thus licensed is called
the contributor’s “contributor version”.

A contributor’s “essential patent claims” are all patent claims owned or controlled by
the contributor, whether already acquired or hereafter acquired, that would be infringed
by some manner, permitted by this License, of making, using, or selling its contributor
version, but do not include claims that would be infringed only as a consequence of
further modification of the contributor version. For purposes of this definition, “con-
trol” includes the right to grant patent sublicenses in a manner consistent with the
requirements of this License.

Each contributor grants you a non-exclusive, worldwide, royalty-free patent license
under the contributor’s essential patent claims, to make, use, sell, offer for sale, import
and otherwise run, modify and propagate the contents of its contributor version.

In the following three paragraphs, a “patent license” is any express agreement or com-
mitment, however denominated, not to enforce a patent (such as an express permission
to practice a patent or covenant not to sue for patent infringement). To “grant” such
a patent license to a party means to make such an agreement or commitment not to
enforce a patent against the party.

If you convey a covered work, knowingly relying on a patent license, and the Corre-
sponding Source of the work is not available for anyone to copy, free of charge and under
the terms of this License, through a publicly available network server or other readily
accessible means, then you must either (1) cause the Corresponding Source to be so

GNU General Public License 369

available, or (2) arrange to deprive yourself of the benefit of the patent license for this
particular work, or (3) arrange, in a manner consistent with the requirements of this
License, to extend the patent license to downstream recipients. “Knowingly relying”
means you have actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient’s use of the covered work in a country,
would infringe one or more identifiable patents in that country that you have reason
to believe are valid.

If, pursuant to or in connection with a single transaction or arrangement, you convey,
or propagate by procuring conveyance of, a covered work, and grant a patent license
to some of the parties receiving the covered work authorizing them to use, propagate,
modify or convey a specific copy of the covered work, then the patent license you grant
is automatically extended to all recipients of the covered work and works based on it.

A patent license is “discriminatory” if it does not include within the scope of its cover-
age, prohibits the exercise of, or is conditioned on the non-exercise of one or more of the
rights that are specifically granted under this License. You may not convey a covered
work if you are a party to an arrangement with a third party that is in the business of
distributing software, under which you make payment to the third party based on the
extent of your activity of conveying the work, and under which the third party grants,
to any of the parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work conveyed by you (or
copies made from those copies), or (b) primarily for and in connection with specific
products or compilations that contain the covered work, unless you entered into that
arrangement, or that patent license was granted, prior to 28 March 2007.

Nothing in this License shall be construed as excluding or limiting any implied license or
other defenses to infringement that may otherwise be available to you under applicable
patent law.

12. No Surrender of Others’ Freedom.

If conditions are imposed on you (whether by court order, agreement or otherwise) that
contradict the conditions of this License, they do not excuse you from the conditions
of this License. If you cannot convey a covered work so as to satisfy simultaneously
your obligations under this License and any other pertinent obligations, then as a
consequence you may not convey it at all. For example, if you agree to terms that
obligate you to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this License would
be to refrain entirely from conveying the Program.

13. Use with the GNU Affero General Public License.

Notwithstanding any other provision of this License, you have permission to link or
combine any covered work with a work licensed under version 3 of the GNU Affero
General Public License into a single combined work, and to convey the resulting work.
The terms of this License will continue to apply to the part which is the covered work,
but the special requirements of the GNU Affero General Public License, section 13,
concerning interaction through a network will apply to the combination as such.

14. Revised Versions of this License.

370 GAWK: Effective AWK Programming

The Free Software Foundation may publish revised and/or new versions of the GNU
General Public License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies that
a certain numbered version of the GNU General Public License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
numbered version or of any later version published by the Free Software Foundation.
If the Program does not specify a version number of the GNU General Public License,
you may choose any version ever published by the Free Software Foundation.

If the Program specifies that a proxy can decide which future versions of the GNU
General Public License can be used, that proxy’s public statement of acceptance of a
version permanently authorizes you to choose that version for the Program.

Later license versions may give you additional or different permissions. However, no
additional obligations are imposed on any author or copyright holder as a result of your
choosing to follow a later version.

15. Disclaimer of Warranty.

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PER-
MITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN
WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE
THE PROGRAM “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EX-
PRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE
OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFEC-
TIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR
CORRECTION.

16. Limitation of Liability.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO
MODIFIES AND/OR CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE
LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, IN-
CIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR
INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO
LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUS-
TAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM
TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR
OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAM-
AGES.

17. Interpretation of Sections 15 and 16.

If the disclaimer of warranty and limitation of liability provided above cannot be given
local legal effect according to their terms, reviewing courts shall apply local law that
most closely approximates an absolute waiver of all civil liability in connection with
the Program, unless a warranty or assumption of liability accompanies a copy of the
Program in return for a fee.

GNU General Public License 371

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public,
the best way to achieve this is to make it free software which everyone can redistribute and
change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the
start of each source file to most effectively state the exclusion of warranty; and each file
should have at least the “copyright” line and a pointer to where the full notice is found.

one line to give the program’s name and a brief idea of what it does.

Copyright (C) year name of author

This program is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by

the Free Software Foundation, either version 3 of the License, or (at

your option) any later version.

This program is distributed in the hope that it will be useful, but

WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU

General Public License for more details.

You should have received a copy of the GNU General Public License

along with this program. If not, see http://www.gnu.org/licenses/.

Also add information on how to contact you by electronic and paper mail.

If the program does terminal interaction, make it output a short notice like this when it
starts in an interactive mode:

program Copyright (C) year name of author

This program comes with ABSOLUTELY NO WARRANTY; for details type ‘show w’.

This is free software, and you are welcome to redistribute it

under certain conditions; type ‘show c’ for details.

The hypothetical commands ‘show w’ and ‘show c’ should show the appropriate parts of
the General Public License. Of course, your program’s commands might be different; for a
GUI interface, you would use an “about box”.

You should also get your employer (if you work as a programmer) or school, if any, to
sign a “copyright disclaimer” for the program, if necessary. For more information on this,
and how to apply and follow the GNU GPL, see http://www.gnu.org/licenses/.

The GNU General Public License does not permit incorporating your program into
proprietary programs. If your program is a subroutine library, you may consider it more
useful to permit linking proprietary applications with the library. If this is what you want
to do, use the GNU Lesser General Public License instead of this License. But first, please
read http://www.gnu.org/philosophy/why-not-lgpl.html.

http://www.gnu.org/licenses/
http://www.gnu.org/licenses/
http://www.gnu.org/philosophy/why-not-lgpl.html

GNU Free Documentation License 373

GNU Free Documentation License

Version 1.3, 3 November 2008

Copyright c© 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.
http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and
useful document free in the sense of freedom: to assure everyone the effective freedom
to copy and redistribute it, with or without modifying it, either commercially or non-
commercially. Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible for modifications
made by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms
of this License. Such a notice grants a world-wide, royalty-free license, unlimited in
duration, to use that work under the conditions stated herein. The “Document”,
below, refers to any such manual or work. Any member of the public is a licensee, and
is addressed as “you”. You accept the license if you copy, modify or distribute the work
in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (Thus, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released

http://fsf.org/

374 GAWK: Effective AWK Programming

under this License. If a section does not fit the above definition of Secondary then it is
not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, that is suitable for
revising the document straightforwardly with generic text editors or (for images com-
posed of pixels) generic paint programs or (for drawings) some widely available drawing
editor, and that is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been arranged to
thwart or discourage subsequent modification by readers is not Transparent. An image
format is not Transparent if used for any substantial amount of text. A copy that is
not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ascii without
markup, Texinfo input format, LaTEX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed
for human modification. Examples of transparent image formats include PNG, XCF

and JPG. Opaque formats include proprietary formats that can be read and edited
only by proprietary word processors, SGML or XML for which the DTD and/or
processing tools are not generally available, and the machine-generated HTML,
PostScript or PDF produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

The “publisher” means any person or entity that distributes copies of the Document
to the public.

A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve
the Title” of such a section when you modify the Document means that it remains a
section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to
be included by reference in this License, but only as regards disclaiming warranties:
any other implication that these Warranty Disclaimers may have is void and has no
effect on the meaning of this License.

2. VERBATIM COPYING

GNU Free Documentation License 375

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions
in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document’s license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with all words of the title
equally prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-network location from which
the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If
you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,

376 GAWK: Effective AWK Programming

be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has fewer
than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified Version
as given on the Title Page. If there is no section Entitled “History” in the Docu-
ment, create one stating the title, year, authors, and publisher of the Document
as given on its Title Page, then add an item describing the Modified Version as
stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included
in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in
title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their

GNU Free Documentation License 377

titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections Entitled “History” in the vari-
ous original documents, forming one section Entitled “History”; likewise combine any
sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You
must delete all sections Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

378 GAWK: Effective AWK Programming

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called
an “aggregate” if the copyright resulting from the compilation is not used to limit the
legal rights of the compilation’s users beyond what the individual works permit. When
the Document is included in an aggregate, this License does not apply to the other
works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they
must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, provided that you
also include the original English version of this License and the original versions of
those notices and disclaimers. In case of a disagreement between the translation and
the original version of this License or a notice or disclaimer, the original version will
prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “His-
tory”, the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense, or
distribute it is void, and will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license from a particular
copyright holder is reinstated (a) provisionally, unless and until the copyright holder
explicitly and finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means prior to 60 days
after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if
the copyright holder notifies you of the violation by some reasonable means, this is the
first time you have received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after your receipt of the
notice.

Termination of your rights under this section does not terminate the licenses of parties
who have received copies or rights from you under this License. If your rights have
been terminated and not permanently reinstated, receipt of a copy of some or all of the
same material does not give you any rights to use it.

GNU Free Documentation License 379

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation. If the Document specifies that a proxy can decide which future
versions of this License can be used, that proxy’s public statement of acceptance of a
version permanently authorizes you to choose that version for the Document.

11. RELICENSING

“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any World Wide
Web server that publishes copyrightable works and also provides prominent facilities
for anybody to edit those works. A public wiki that anybody can edit is an example of
such a server. A “Massive Multiauthor Collaboration” (or “MMC”) contained in the
site means any set of copyrightable works thus published on the MMC site.

“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license pub-
lished by Creative Commons Corporation, a not-for-profit corporation with a principal
place of business in San Francisco, California, as well as future copyleft versions of that
license published by that same organization.

“Incorporate” means to publish or republish a Document, in whole or in part, as part
of another Document.

An MMC is “eligible for relicensing” if it is licensed under this License, and if all works
that were first published under this License somewhere other than this MMC, and
subsequently incorporated in whole or in part into the MMC, (1) had no cover texts
or invariant sections, and (2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under
CC-BY-SA on the same site at any time before August 1, 2009, provided the MMC is
eligible for relicensing.

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.3

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover

Texts. A copy of the license is included in the section entitled ‘‘GNU

Free Documentation License’’.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with. . .Texts.” line with this:

http://www.gnu.org/copyleft/

380 GAWK: Effective AWK Programming

with the Invariant Sections being list their titles, with

the Front-Cover Texts being list, and with the Back-Cover Texts

being list.

If you have Invariant Sections without Cover Texts, or some other combination of the
three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.

Index 381

Index

!
! (exclamation point), ! operator . . . 108, 111, 115,

251
! (exclamation point), != operator 105, 112
! (exclamation point), !~ operator . . 37, 45, 47, 92,

105, 107, 112, 114

"
" (double quote) . 12, 15
" (double quote), regexp constants 47

#
(number sign), #! (executable scripts) 13
(number sign), #! (executable scripts),

portability issues with . 13
(number sign), commenting 14

$
$ (dollar sign) . 40
$ (dollar sign), $ field operator 52, 111
$ (dollar sign), incrementing fields and arrays

. 103

%
% (percent sign), % operator 111
% (percent sign), %= operator 101, 112

&
& (ampersand), && operator 108, 112
& (ampersand), gsub()/gensub()/sub() functions

and . 162

’
’ (single quote) . 11, 13, 15
’ (single quote), vs. apostrophe 14
’ (single quote), with double quotes 15

(
() (parentheses) . 41
() (parentheses), pgawk program 211

*
* (asterisk), * operator, as multiplication operator

. 111
* (asterisk), * operator, as regexp operator 41

* (asterisk), * operator, null strings, matching
. 165

* (asterisk), ** operator 98, 111
* (asterisk), **= operator 101, 112
* (asterisk), *= operator 101, 112

+
+ (plus sign) . 41
+ (plus sign), + operator 111, 112
+ (plus sign), ++ (decrement/increment operators)

. 102
+ (plus sign), ++ operator 103, 111
+ (plus sign), += operator 101, 112

,
, (comma), in range patterns 115

-
- (hyphen), - operator 111, 112
- (hyphen), -- (decrement/increment) operator

. 111
- (hyphen), -- operator . 103
- (hyphen), -= operator 101, 112
- (hyphen), filenames beginning with 26
- (hyphen), in bracket expressions 42
--assign option . 26
--c option . 26
--characters-as-bytes option 26
--command option . 29
--copyright option . 26
--disable-lint configuration option 317
--disable-nls configuration option 317
--dump-variables option 27, 214
--exec option . 27
--field-separator option . 25
--file option . 25
--gen-pot option . 27, 193
--help option . 27
--L option . 29
--lint option . 25, 28
--lint-old option . 29
--non-decimal-data option 28, 199
--non-decimal-data option, strtonum() function

and . 199
--optimize option . 28
--posix option . 28
--posix option, --traditional option and 29
--profile option . 28, 209
--re-interval option . 29
--sandbox option . 29
--sandbox option, disabling system() function

. 167

382 GAWK: Effective AWK Programming

--sandbox option, input redirection with getline

. 67
--sandbox option, output redirection with print,

printf . 83
--source option . 27, 30
--traditional option . 26
--traditional option, --posix option and 29
--use-lc-numeric option . 28
--version option . 29
--with-whiny-user-strftime configuration option

. 317
-b option . 26
-C option . 26
-d option . 27
-e option . 27
-E option . 27
-f option . 12, 25
-F option . 25, 59
-F option, -Ft sets FS to TAB 29
-f option, on command line 30
-g option . 27
-h option . 27
-l option . 28
-n option . 28
-N option . 28
-O option . 28
-p option . 28
-P option . 28
-r option . 29
-R option . 29
-S option . 29
-v option . 26
-V option . 29
-v option, variables, assigning 94
-W option . 26

.

. (period) . 40

.mo files . 190

.mo files, converting from .po 196

.mo files, specifying directory of 190, 191

.po files . 189, 193

.po files, converting to .mo 196

.pot files . 189

/
/ (forward slash) . 37
/ (forward slash), / operator 111
/ (forward slash), /= operator 101, 112
/ (forward slash), /= operator, vs. /=.../ regexp

constant . 102
/ (forward slash), patterns and 114
/= operator vs. /=.../ regexp constant 102
/dev/... special files (gawk) 86
/dev/fd/N special files . 86
/inet/... special files (gawk) 207

/inet4/... special files (gawk) 207
/inet6/... special files (gawk) 207

;
; (semicolon) . 22
; (semicolon), AWKPATH variable and 321
; (semicolon), separating statements in actions

. 119, 120

<
< (left angle bracket), < operator 105, 112
< (left angle bracket), < operator (I/O) 69
< (left angle bracket), <= operator 105, 112

=
= (equals sign), = operator . 100
= (equals sign), == operator 105, 112

>
> (right angle bracket), > operator 105, 112
> (right angle bracket), > operator (I/O) 84
> (right angle bracket), >= operator 105, 112
> (right angle bracket), >> operator (I/O) . . 84, 112

?
? (question mark) regexp operator 41, 44
? (question mark), ?: operator 112

[
[] (square brackets) . 40

^
^ (caret) . 40, 44
^ (caret), ^ operator . 111
^ (caret), ^= operator . 101, 112
^ (caret), in bracket expressions 42
^, in FS . 58

_ (underscore), _ C macro . 190
_ (underscore), in names of private variables . . 214
_ (underscore), translatable string 192
_gr_init() user-defined function 238
_pw_init() user-defined function 234

\
\ (backslash) . 12, 14, 15, 40
\ (backslash), \" escape sequence 39

Index 383

\ (backslash), \’ operator (gawk) 44
\ (backslash), \/ escape sequence 39
\ (backslash), \< operator (gawk) 44
\ (backslash), \> operator (gawk) 44
\ (backslash), \‘ operator (gawk) 44
\ (backslash), \a escape sequence 38
\ (backslash), \b escape sequence 38
\ (backslash), \B operator (gawk) 44
\ (backslash), \f escape sequence 38
\ (backslash), \n escape sequence 38
\ (backslash), \nnn escape sequence 38
\ (backslash), \r escape sequence 38
\ (backslash), \s operator (gawk) 44
\ (backslash), \S operator (gawk) 44
\ (backslash), \t escape sequence 38
\ (backslash), \v escape sequence 38
\ (backslash), \w operator (gawk) 44
\ (backslash), \W operator (gawk) 44
\ (backslash), \x escape sequence 38
\ (backslash), \y operator (gawk) 44
\ (backslash), as field separators 59
\ (backslash), continuing lines and 21, 252
\ (backslash), continuing lines and, comments and

. 22
\ (backslash), continuing lines and, in csh 21
\ (backslash), gsub()/gensub()/sub() functions

and . 162
\ (backslash), in bracket expressions 42
\ (backslash), in escape sequences 38, 39
\ (backslash), in escape sequences, POSIX and

. 39
\ (backslash), regexp constants 47

|
| (vertical bar) . 41
| (vertical bar), | operator (I/O) 70, 84, 112
| (vertical bar), |& operator (I/O) 71, 85, 112,

206
| (vertical bar), |& operator (I/O), pipes, closing

. 89
| (vertical bar), || operator 108, 112
{} (braces), actions and . 119
{} (braces), pgawk program 211
{} (braces), statements, grouping 120

~
~ (tilde), ~ operator . . 37, 45, 47, 92, 105, 107, 112,

114

A
accessing fields . 52
account information . 232, 236
actions . 119
actions, control statements in 120
actions, default . 18

actions, empty . 18
Ada programming language 351
adding, features to gawk . 330
adding, fields . 55
adding, functions to gawk . 332
advanced features, buffering 167
advanced features, close() function 89
advanced features, constants, values of 92
advanced features, data files as single record . . . 52
advanced features, fixed-width data 61
advanced features, FNR/NR variables 135
advanced features, gawk . 199
advanced features, gawk, network programming

. 207
advanced features, gawk, nondecimal input data

. 199
advanced features, gawk, processes, communicating

with . 205
advanced features, network connections, See Also

networks, connections . 199
advanced features, null strings, matching 165
advanced features, operators, precedence 103
advanced features, piping into sh 85
advanced features, regexp constants 102
advanced features, specifying field content 63
Aho, Alfred . 4, 309
alarm clock example program 264
alarm.awk program . 264
algorithms . 346
Alpha (DEC) . 8
amazing awk assembler (aaa) 351
amazingly workable formatter (awf) 351
ambiguity, syntactic: /= operator vs. /=.../ regexp

constant . 102
ampersand (&), && operator 108, 112
ampersand (&), gsub()/gensub()/sub() functions

and . 162
anagram.awk program . 284
AND bitwise operation . 172
and Boolean-logic operator 107
and() function (gawk) . 173
ANSI . 351
archeologists . 324
ARGC/ARGV variables . 131, 135
ARGC/ARGV variables, command-line arguments

. 30
ARGC/ARGV variables, portability and 14
ARGIND variable . 132
ARGIND variable, command-line arguments 30
arguments, command-line 30, 131, 135
arguments, command-line, invoking awk 25
arguments, in function calls 110
arguments, processing . 227
arguments, retrieving . 335
arithmetic operators . 97
arrays . 137
arrays, as parameters to functions 181
arrays, associative . 138

384 GAWK: Effective AWK Programming

arrays, associative, clearing 334
arrays, associative, library functions and 214
arrays, deleting entire contents 144
arrays, elements, assigning . 139
arrays, elements, deleting . 144
arrays, elements, installing . 334
arrays, elements, order of . 141
arrays, elements, referencing 138
arrays, elements, retrieving number of 153
arrays, for statement and . 140
arrays, IGNORECASE variable and 138
arrays, indexing . 138
arrays, merging into strings 220
arrays, multidimensional . 146
arrays, multidimensional, scanning 147
arrays, names of . 137
arrays, scanning . 140
arrays, sorting . 204
arrays, sorting, IGNORECASE variable and 205
arrays, sparse . 138
arrays, subscripts . 145
arrays, subscripts, uninitialized variables as . . . 145
artificial intelligence, gawk and 314
ASCII . 219, 352
asort() function (gawk) 153, 204
asort() function (gawk), arrays, sorting 204
asorti() function (gawk) . 154
assert() function (C library) 216
assert() user-defined function 216
assertions . 216
assignment operators . 100
assignment operators, evaluation order 101
assignment operators, lvalues/rvalues 100
assignments as filenames . 227
assoc_clear() internal function 334
assoc_lookup() internal function 334
associative arrays . 138
asterisk (*), * operator, as multiplication operator

. 111
asterisk (*), * operator, as regexp operator 41
asterisk (*), * operator, null strings, matching

. 165
asterisk (*), ** operator 98, 111
asterisk (*), **= operator 101, 112
asterisk (*), *= operator 101, 112
atan2() function . 152
awf (amazingly workable formatter) program . . 351
awk language, POSIX version 102
awk programs . 11, 13, 19
awk programs, complex . 23
awk programs, documenting 14, 213
awk programs, examples of . 243
awk programs, execution of 126
awk programs, internationalizing 175, 191
awk programs, lengthy . 12
awk programs, lengthy, assertions 216
awk programs, location of 25, 27
awk programs, one-line examples 18

awk programs, profiling . 209
awk programs, profiling, enabling 28
awk programs, running . 11, 12
awk programs, running, from shell scripts 11
awk programs, running, without input files 12
awk programs, shell variables in 118
awk, function of . 11
awk, gawk and . 3, 5
awk, history of . 4
awk, implementation issues, pipes 85
awk, implementations . 325
awk, implementations, limits 72
awk, invoking . 25
awk, new vs. old . 4
awk, new vs. old, OFMT variable 96
awk, POSIX and . 3
awk, POSIX and, See Also POSIX awk 3
awk, regexp constants and . 107
awk, See Also gawk . 3
awk, terms describing . 5
awk, uses for . 3, 11, 22
awk, versions of . 4, 303
awk, versions of, changes between SVR3.1 and

SVR4 . 304
awk, versions of, changes between SVR4 and

POSIX awk . 304
awk, versions of, changes between V7 and SVR3.1

. 303
awk, versions of, See Also Brian Kernighan’s awk

. 305, 325
awk.h file (internal) . 333
awka compiler for awk . 326
AWKNUM internal type . 333
AWKPATH environment variable 32
AWKPATH environment variable 321
awkprof.out file . 209
awksed.awk program . 277
awkvars.out file . 27

B
b debugger command (alias for break) 292
backslash (\) . 12, 14, 15, 40
backslash (\), \" escape sequence 39
backslash (\), \’ operator (gawk) 44
backslash (\), \/ escape sequence 39
backslash (\), \< operator (gawk) 44
backslash (\), \> operator (gawk) 44
backslash (\), \‘ operator (gawk) 44
backslash (\), \a escape sequence 38
backslash (\), \b escape sequence 38
backslash (\), \B operator (gawk) 44
backslash (\), \f escape sequence 38
backslash (\), \n escape sequence 38
backslash (\), \nnn escape sequence 38
backslash (\), \r escape sequence 38
backslash (\), \s operator (gawk) 44
backslash (\), \S operator (gawk) 44

Index 385

backslash (\), \t escape sequence 38
backslash (\), \v escape sequence 38
backslash (\), \w operator (gawk) 44
backslash (\), \W operator (gawk) 44
backslash (\), \x escape sequence 38
backslash (\), \y operator (gawk) 44
backslash (\), as field separators 59
backslash (\), continuing lines and 21, 252
backslash (\), continuing lines and, comments and

. 22
backslash (\), continuing lines and, in csh 21
backslash (\), gsub()/gensub()/sub() functions

and . 162
backslash (\), in bracket expressions 42
backslash (\), in escape sequences 38, 39
backslash (\), in escape sequences, POSIX and

. 39
backslash (\), regexp constants 47
backtrace debugger command 296
BBS-list file . 16
Beebe, Nelson . 10, 326
BEGIN pattern . 49, 57, 116
BEGIN pattern, assert() user-defined function and

. 217
BEGIN pattern, Boolean patterns and 115
BEGIN pattern, exit statement and 128
BEGIN pattern, getline and 72
BEGIN pattern, headings, adding 76
BEGIN pattern, next/nextfile statements and

. 117, 127
BEGIN pattern, OFS/ORS variables, assigning values

to . 77
BEGIN pattern, operators and 116
BEGIN pattern, pgawk program 209
BEGIN pattern, print statement and 117
BEGIN pattern, pwcat program 235
BEGIN pattern, running awk programs and 244
BEGIN pattern, TEXTDOMAIN variable and 192
BEGINFILE pattern . 117
BEGINFILE pattern, Boolean patterns and 115
beginfile() user-defined function 224
Benzinger, Michael . 310
Berry, Karl . 9
binary input/output . 129
bindtextdomain() function (C library) 190
bindtextdomain() function (gawk) 175, 191
bindtextdomain() function (gawk), portability and

. 195
BINMODE variable . 129, 321
bits2str() user-defined function 173
bitwise, complement . 173
bitwise, operations . 172
bitwise, shift . 173
body, in actions . 120
body, in loops . 121
Boolean expressions . 107
Boolean expressions, as patterns 114
Boolean operators, See Boolean expressions . . . 107

Bourne shell, quoting rules for 15
braces ({}), actions and . 119
braces ({}), pgawk program 211
braces ({}), statements, grouping 120
bracket expressions . 40, 42
bracket expressions, character classes 43
bracket expressions, collating elements 43
bracket expressions, collating symbols 43
bracket expressions, complemented 41
bracket expressions, equivalence classes 43
bracket expressions, non-ASCII 43
bracket expressions, range expressions 42
break debugger command . 292
break statement . 124
Brennan, Michael 144, 205, 277, 325, 326
Brian Kernighan’s awk, extensions 305, 325
Broder, Alan J. 310
Brown, Martin . 310
BSD-based operating systems 360
bt debugger command (alias for backtrace) . . 296
Buening, Andreas . 10, 310, 325
buffering, input/output 167, 206
buffering, interactive vs. noninteractive 167
buffers, flushing . 166, 167
buffers, operators for . 44
bug reports, email address, bug-gawk@gnu.org

. 324
bug-gawk@gnu.org bug reporting address 324
built-in functions . 151
built-in functions, evaluation order 151
built-in variables . 128
built-in variables, -v option, setting with 26
built-in variables, conveying information 131
built-in variables, user-modifiable 129
Busybox Awk . 326

C
call by reference . 181
call by value . 180
caret (^) . 40, 44
caret (^), ^ operator . 111
caret (^), ^= operator . 101, 112
caret (^), in bracket expressions 42
case keyword . 123
case sensitivity, array indices and 138
case sensitivity, converting case 162
case sensitivity, example programs 213
case sensitivity, gawk . 45
case sensitivity, regexps and 45, 130
case sensitivity, string comparisons and 130
CGI, awk scripts for . 27
character lists, See bracket expressions 40
character sets (machine character encodings)

. 219, 352
character sets, See Also bracket expressions 40
characters, counting . 261
characters, transliterating . 267

386 GAWK: Effective AWK Programming

characters, values of as numbers 219
Chassell, Robert J. 9
chdir() function, implementing in gawk 336
chem utility . 353
chr() user-defined function 219
clear debugger command . 293
Cliff random numbers . 218
cliff_rand() user-defined function 218
close() function 69, 70, 88, 165
close() function, return values 89
close() function, two-way pipes and 206
Close, Diane . 8, 309
close_func() input method 335
collating elements . 43
collating symbols . 43
Colombo, Antonio . 10
columns, aligning . 76
columns, cutting . 243
comma (,), in range patterns 115
command line, arguments 30, 131, 135
command line, directories on 73
command line, formats . 11
command line, FS on, setting 59
command line, invoking awk from 25
command line, options 12, 25, 59
command line, options, end of 26
command line, variables, assigning on 94
command-line options, processing 227
command-line options, string extraction 193
commands debugger command 294
commenting . 14
commenting, backslash continuation and 22
common extensions, ** operator 98
common extensions, **= operator 102
common extensions, /dev/stderr special file . . . 86
common extensions, /dev/stdin special file 86
common extensions, /dev/stdout special file . . . 86
common extensions, \x escape sequence 38
common extensions, BINMODE variable 321
common extensions, delete to delete entire arrays

. 144
common extensions, fflush() function 166
common extensions, func keyword 177
common extensions, length() applied to an array

. 156
common extensions, nextfile statement 127
common extensions, RS as a regexp 51
common extensions, single character fields 58
comp.lang.awk newsgroup . 324
comparison expressions . 104
comparison expressions, as patterns 114
comparison expressions, string vs. regexp 107
compatibility mode (gawk), extensions 305
compatibility mode (gawk), file names 87
compatibility mode (gawk), hexadecimal numbers

. 92
compatibility mode (gawk), octal numbers 92
compatibility mode (gawk), specifying 26

compiled programs . 345, 353
compiling gawk for Cygwin 322
compiling gawk for MS-DOS and MS-Windows

. 319
compiling gawk for VMS . 322
compiling gawk with EMX for OS/2 319
compl() function (gawk) . 173
complement, bitwise . 173
compound statements, control statements and

. 120
concatenating . 98
condition debugger command 293
conditional expressions . 109
configuration option, --disable-lint 317
configuration option, --disable-nls 317
configuration option,

--with-whiny-user-strftime 317
configuration options, gawk 317
constants, nondecimal . 199
constants, types of . 91
continue statement . 125
control statements . 120
converting, case . 162
converting, dates to timestamps 169
converting, during subscripting 145
converting, numbers to strings 95, 174
converting, strings to numbers 95, 174
CONVFMT variable . 95, 129
CONVFMT variable, array subscripts and 145
coprocesses . 85, 206
coprocesses, closing . 88
coprocesses, getline from . 71
cos() function . 152
counting . 261
csh utility . 21
csh utility, |& operator, comparison with 206
csh utility, POSIXLY_CORRECT environment variable

. 30
ctime() user-defined function 178
currency symbols, localization 190
custom.h file . 318
cut utility . 243
cut.awk program . 244

D
d debugger command (alias for delete) 293
d.c., See dark corner . 7
dark corner . 7, 102, 104, 353
dark corner, ^, in FS . 58
dark corner, array subscripts 146
dark corner, break statement 125
dark corner, close() function 89
dark corner, command-line arguments 95
dark corner, continue statement 126
dark corner, CONVFMT variable 96
dark corner, escape sequences 31

Index 387

dark corner, escape sequences, for metacharacters
. 40

dark corner, exit statement 128
dark corner, field separators 60
dark corner, FILENAME variable 72, 133
dark corner, FNR/NR variables 135
dark corner, format-control characters 79, 80
dark corner, FS as null string 58
dark corner, input files . 51
dark corner, invoking awk . 25
dark corner, length() function 156
dark corner, multiline records 65
dark corner, NF variable, decrementing 55
dark corner, OFMT variable . 78
dark corner, regexp constants 93
dark corner, regexp constants, /= operator and

. 102
dark corner, regexp constants, as arguments to

user-defined functions . 93
dark corner, split() function 159
dark corner, strings, storing . 52
dark corner, value of ARGV[0] 132
data, fixed-width . 61
data-driven languages . 346
database, group, reading . 236
database, users, reading . 232
date utility, GNU . 168
date utility, POSIX . 172
dates, converting to timestamps 169
dates, information related to, localization 191
Davies, Stephen . 10, 310
dcgettext() function (gawk) 175, 191
dcgettext() function (gawk), portability and

. 195
dcngettext() function (gawk) 175, 191
dcngettext() function (gawk), portability and

. 195
deadlocks . 206
debugger commands, b (break) 292
debugger commands, backtrace 296
debugger commands, break 292
debugger commands, bt (backtrace) 296
debugger commands, c (continue) 294
debugger commands, clear 293
debugger commands, commands 294
debugger commands, condition 293
debugger commands, continue 294
debugger commands, d (delete) 293
debugger commands, delete 293
debugger commands, disable 293
debugger commands, display 295
debugger commands, down . 297
debugger commands, dump . 298
debugger commands, e (enable) 293
debugger commands, enable 293
debugger commands, end . 294
debugger commands, eval . 295
debugger commands, f (frame) 297

debugger commands, finish 294
debugger commands, frame 297
debugger commands, h (help) 299
debugger commands, help . 299
debugger commands, i (info) 297
debugger commands, ignore 293
debugger commands, info . 297
debugger commands, l (list) 300
debugger commands, list . 300
debugger commands, n (next) 294
debugger commands, next . 294
debugger commands, nexti 294
debugger commands, ni (nexti) 294
debugger commands, o (option) 298
debugger commands, option 298
debugger commands, p (print) 295
debugger commands, print 295
debugger commands, printf 296
debugger commands, q (quit) 300
debugger commands, quit . 300
debugger commands, r (run) 294
debugger commands, return 294
debugger commands, run . 294
debugger commands, s (step) 295
debugger commands, set . 296
debugger commands, si (stepi) 295
debugger commands, silent 294
debugger commands, step . 295
debugger commands, stepi 295
debugger commands, t (tbreak) 293
debugger commands, tbreak 293
debugger commands, trace 300
debugger commands, u (until) 295
debugger commands, undisplay 296
debugger commands, until 295
debugger commands, unwatch 296
debugger commands, up . 297
debugger commands, w (watch) 296
debugger commands, watch 296
debugging gawk, bug reports 324
decimal point character, locale specific 29
decrement operators . 103
default keyword . 123
Deifik, Scott . 10, 310, 325
delete debugger command 293
delete statement . 144
deleting elements in arrays . 144
deleting entire arrays . 144
dgawk . 287
differences between gawk and awk 156
differences in awk and gawk, ARGC/ARGV variables

. 136
differences in awk and gawk, ARGIND variable . . 132
differences in awk and gawk, array elements,

deleting . 144
differences in awk and gawk, AWKPATH environment

variable . 32

388 GAWK: Effective AWK Programming

differences in awk and gawk, BEGIN/END patterns
. 117

differences in awk and gawk, BINMODE variable
. 129, 321

differences in awk and gawk, close() function . . 89
differences in awk and gawk, ERRNO variable 132
differences in awk and gawk, error messages 86
differences in awk and gawk, FIELDWIDTHS variable

. 129
differences in awk and gawk, FPAT variable 129
differences in awk and gawk, function arguments

(gawk) . 151
differences in awk and gawk, getline command

. 67
differences in awk and gawk, IGNORECASE variable

. 130
differences in awk and gawk, implementation

limitations . 72, 85
differences in awk and gawk, indirect function calls

. 183
differences in awk and gawk, input/output

operators . 71, 85
differences in awk and gawk, line continuations

. 109
differences in awk and gawk, LINT variable 130
differences in awk and gawk, match() function

. 157
differences in awk and gawk, next/nextfile

statements . 127
differences in awk and gawk, print/printf

statements . 80
differences in awk and gawk, PROCINFO array . . . 133
differences in awk and gawk, record separators . . 51
differences in awk and gawk, regexp constants . . . 93
differences in awk and gawk, regular expressions

. 45
differences in awk and gawk, RS/RT variables 52
differences in awk and gawk, RT variable 134
differences in awk and gawk, single-character fields

. 58
differences in awk and gawk, split() function

. 159
differences in awk and gawk, strings 91
differences in awk and gawk, strings, storing 52
differences in awk and gawk, strtonum() function

(gawk) . 160
differences in awk and gawk, TEXTDOMAIN variable

. 131
differences in awk and gawk, trunc-mod operation

. 98
directories, changing . 336
directories, command line . 73
directories, searching . 32, 284
disable debugger command 293
display debugger command 295
division . 98
do-while statement . 37, 122
documentation, of awk programs 213

documentation, online . 7
documents, searching . 263
dollar sign ($) . 40
dollar sign ($), $ field operator 52, 111
dollar sign ($), incrementing fields and arrays

. 103
double precision floating-point 347
double quote (") . 12, 15
double quote ("), regexp constants 47
down debugger command . 297
Drepper, Ulrich . 10
DuBois, John . 10
dump debugger command . 298
dupnode() internal function 334
dupword.awk program . 264

E
e debugger command (alias for enable) 293
EBCDIC . 219
egrep utility . 43, 248
egrep.awk program . 249
elements in arrays . 138
elements in arrays, assigning 139
elements in arrays, deleting 144
elements in arrays, order of 141
elements in arrays, scanning 140
email address for bug reports, bug-gawk@gnu.org

. 324
EMISTERED . 207
empty pattern . 118
empty strings, See null strings 58
enable debugger command 293
end debugger command . 294
END pattern . 116
END pattern, assert() user-defined function and

. 217
END pattern, backslash continuation and 252
END pattern, Boolean patterns and 115
END pattern, exit statement and 128
END pattern, next/nextfile statements and . . 117,

127
END pattern, operators and . 116
END pattern, pgawk program 209
END pattern, print statement and 117
ENDFILE pattern . 117
ENDFILE pattern, Boolean patterns and 115
endfile() user-defined function 224
endgrent() function (C library) 240
endgrent() user-defined function 240
endpwent() function (C library) 236
endpwent() user-defined function 236
ENVIRON array . 132, 335
environment variables . 132
epoch, definition of . 354
equals sign (=), = operator . 100
equals sign (=), == operator 105, 112
EREs (Extended Regular Expressions) 43

Index 389

ERRNO variable 67, 90, 118, 132, 208, 335
error handling . 86
error handling, ERRNO variable and 132
error output . 86
escape processing, gsub()/gensub()/sub()

functions . 162
escape sequences . 38
eval debugger command . 295
evaluation order . 103
evaluation order, concatenation 99
evaluation order, functions . 151
examining fields . 52
exclamation point (!), ! operator . . . 108, 111, 251
exclamation point (!), != operator 105, 112
exclamation point (!), !~ operator . . 37, 45, 47, 92,

105, 107, 112, 114
exit statement . 128
exit status, of gawk . 33
exp() function . 152
expand utility . 18
expressions . 91
expressions, as patterns . 113
expressions, assignment . 100
expressions, Boolean . 107
expressions, comparison . 104
expressions, conditional . 109
expressions, matching, See comparison expressions

. 104
expressions, selecting . 109
Extended Regular Expressions (EREs) 43
eXtensible Markup Language (XML) 335
extension() function (gawk) 341
extensions, Brian Kernighan’s awk 305, 325
extensions, common, ** operator 98
extensions, common, **= operator 102
extensions, common, /dev/stderr special file . . 86
extensions, common, /dev/stdin special file 86
extensions, common, /dev/stdout special file . . 86
extensions, common, \x escape sequence 38
extensions, common, BINMODE variable 321
extensions, common, delete to delete entire arrays

. 144
extensions, common, fflush() function 166
extensions, common, func keyword 177
extensions, common, length() applied to an array

. 156
extensions, common, nextfile statement 127
extensions, common, RS as a regexp 51
extensions, common, single character fields 58
extensions, in gawk, not in POSIX awk 305
extract.awk program . 274
extraction, of marked strings (internationalization)

. 193

F
f debugger command (alias for frame) 297
false, logical . 103

FDL (Free Documentation License) 373
features, adding to gawk . 330
features, advanced, See advanced features 35
features, deprecated . 35
features, undocumented . 35
Fenlason, Jay . 4, 309
fflush() function . 166
field numbers . 53
field operator $. 52
field operators, dollar sign as 52
field separators . 56, 129, 130
field separators, choice of . 57
field separators, FIELDWIDTHS variable and 129
field separators, FPAT variable and 129
field separators, in multiline records 65
field separators, on command line 59
field separators, POSIX and 52, 60
field separators, regular expressions as 57
field separators, See Also OFS 55
field separators, spaces as . 245
fields . 49, 52, 346
fields, adding . 55
fields, changing contents of . 54
fields, cutting . 243
fields, examining . 52
fields, number of . 52
fields, numbers . 53
fields, printing . 75
fields, separating . 56
fields, single-character . 58
FIELDWIDTHS variable . 61, 129
file descriptors . 86
file names, distinguishing . 132
file names, in compatibility mode 87
file names, standard streams in gawk 86
FILENAME variable . 49, 133
FILENAME variable, getline, setting with 72
filenames, assignments as . 227
files, .mo . 190
files, .mo, converting from .po 196
files, .mo, specifying directory of 190, 191
files, .po . 189, 193
files, .po, converting to .mo 196
files, .pot . 189
files, /dev/... special files . 86
files, /inet/... (gawk) . 207
files, /inet4/... (gawk) . 207
files, /inet6/... (gawk) . 207
files, as single records . 52
files, awk programs in . 12
files, awkprof.out . 209
files, awkvars.out . 27
files, closing . 165
files, descriptors, See file descriptors 86
files, group . 236
files, information about, retrieving 336
files, initialization and cleanup 223
files, input, See input files . 12

390 GAWK: Effective AWK Programming

files, log, timestamps in . 168
files, managing . 223
files, managing, data file boundaries 223
files, message object . 190
files, message object, converting from portable

object files . 196
files, message object, specifying directory of . . 190,

191
files, multiple passes over . 31
files, multiple, duplicating output into 256
files, output, See output files 88
files, password . 232
files, portable object . 189, 193
files, portable object template 189
files, portable object, converting to message object

files . 196
files, portable object, generating 27
files, processing, ARGIND variable and 132
files, reading . 224
files, reading, multiline records 64
files, searching for regular expressions 248
files, skipping . 225
files, source, search path for 284
files, splitting . 254
files, Texinfo, extracting programs from 273
finish debugger command 294
Fish, Fred . 310
fixed-width data . 61
flag variables . 108, 256
floating-point, numbers 346, 348
floating-point, numbers, AWKNUM internal type . . 333
FNR variable . 49, 133
FNR variable, changing . 135
for statement . 122
for statement, in arrays . 140
force_number() internal function 333
force_string() internal function 333
force_wstring() internal function 333
format specifiers, mixing regular with positional

specifiers . 194
format specifiers, printf statement 78
format specifiers, strftime() function (gawk)

. 169
format strings . 78
formats, numeric output . 77
formatting output . 78
forward slash (/) . 37
forward slash (/), / operator 111
forward slash (/), /= operator 101, 112
forward slash (/), /= operator, vs. /=.../ regexp

constant . 102
forward slash (/), patterns and 114
FPAT variable . 63, 129
frame debugger command . 297
Free Documentation License (FDL) 373
Free Software Foundation (FSF) 7, 313, 355
FreeBSD . 360
FS variable . 56, 129

FS variable, --field-separator option and 25
FS variable, as null string . 58
FS variable, as TAB character 29
FS variable, changing value of 56
FS variable, running awk programs and 244
FS variable, setting from command line 59
FS, containing ^ . 58
FSF (Free Software Foundation) 7, 313, 355
function calls . 109
function calls, indirect . 183
function pointers . 183
functions, arrays as parameters to 181
functions, built-in . 109, 151
functions, built-in, adding to gawk 332
functions, built-in, evaluation order 151
functions, defining . 175
functions, library . 213
functions, library, assertions 216
functions, library, associative arrays and 214
functions, library, C library 227
functions, library, character values as numbers

. 219
functions, library, Cliff random numbers 218
functions, library, command-line options 227
functions, library, example program for using . . 278
functions, library, group database, reading 236
functions, library, managing data files 223
functions, library, managing time 221
functions, library, merging arrays into strings . . 220
functions, library, rounding numbers 217
functions, library, user database, reading 232
functions, names of . 137, 176
functions, recursive . 176
functions, return values, setting 335
functions, string-translation 175
functions, undefined . 181
functions, user-defined . 175
functions, user-defined, calling 178
functions, user-defined, counts 211
functions, user-defined, library of 213
functions, user-defined, next/nextfile statements

and . 127

G
G-d . 10
Garfinkle, Scott . 310
gawk, ARGIND variable in . 30
gawk, awk and . 3, 5
gawk, bitwise operations in . 173
gawk, break statement in . 125
gawk, built-in variables and 128
gawk, character classes and . 44
gawk, coding style in . 330
gawk, command-line options 45
gawk, comparison operators and 106
gawk, configuring . 318
gawk, configuring, options . 317

Index 391

gawk, continue statement in 126
gawk, distribution . 314
gawk, ERRNO variable in 67, 90, 118, 132, 208
gawk, escape sequences . 39
gawk, extensions, disabling . 28
gawk, features, adding . 330
gawk, features, advanced . 199
gawk, field separators and . 130
gawk, FIELDWIDTHS variable in 61, 129
gawk, file names in . 86
gawk, format-control characters 79, 80
gawk, FPAT variable in . 63, 129
gawk, function arguments and 151
gawk, functions, adding . 332
gawk, hexadecimal numbers and 92
gawk, IGNORECASE variable in 45, 130, 138, 153,

205
gawk, implementation issues 329
gawk, implementation issues, debugging 329
gawk, implementation issues, downward

compatibility . 329
gawk, implementation issues, limits 72
gawk, implementation issues, pipes 85
gawk, installing . 313
gawk, internals . 333
gawk, internationalization and, See

internationalization . 189
gawk, interpreter, adding code to 341
gawk, interval expressions and 42
gawk, line continuation in . 109
gawk, LINT variable in . 130
gawk, list of contributors to 309
gawk, MS-DOS version of . 321
gawk, MS-Windows version of 321
gawk, newlines in . 21
gawk, octal numbers and . 92
gawk, OS/2 version of . 321
gawk, PROCINFO array in 133, 134, 169, 207
gawk, regexp constants and . 93
gawk, regular expressions, case sensitivity 45
gawk, regular expressions, operators 44
gawk, regular expressions, precedence 42
gawk, RT variable in 51, 67, 69, 134
gawk, See Also awk . 3
gawk, source code, obtaining 313
gawk, splitting fields and . 62
gawk, string-translation functions 175
gawk, TEXTDOMAIN variable in 131
gawk, timestamps . 168
gawk, uses for . 3
gawk, versions of, information about, printing . . 29
gawk, VMS version of . 322
gawk, word-boundary operator 44
General Public License (GPL) 355
General Public License, See GPL 7
gensub() function (gawk) 93, 154
gensub() function (gawk), escape processing . . 162
get_actual_argument() internal function 335

get_argument() internal function 335
get_array_argument() internal macro 335
get_curfunc_arg_count() internal function . . 333
get_record() input method 335
get_scalar_argument() internal macro 335
getaddrinfo() function (C library) 208
getgrent() function (C library) 236, 240
getgrent() user-defined function 236, 240
getgrgid() function (C library) 240
getgrgid() user-defined function 240
getgrnam() function (C library) 239
getgrnam() user-defined function 239
getgruser() function (C library) 240
getgruser() function, user-defined 240
getline command . 49
getline command, _gr_init() user-defined

function . 238
getline command, _pw_init() function 235
getline command, coprocesses, using from 71,

88
getline command, deadlock and 206
getline command, explicit input with 67
getline command, FILENAME variable and 72
getline command, return values 67
getline command, variants . 72
getline statement, BEGINFILE/ENDFILE patterns

and . 118
getopt() function (C library) 227
getopt() user-defined function 229
getpwent() function (C library) 232, 235
getpwent() user-defined function 232, 236
getpwnam() function (C library) 235
getpwnam() user-defined function 235
getpwuid() function (C library) 235
getpwuid() user-defined function 235
gettext library . 189
gettext library, locale categories 190
gettext() function (C library) 190
gettimeofday() user-defined function 221
GNITS mailing list . 10
GNU awk, See gawk . 3
GNU Free Documentation License 373
GNU General Public License 355
GNU Lesser General Public License 357
GNU long options . 25
GNU long options, printing list of 27
GNU Project . 7, 355
GNU/Linux . 8, 196, 360
GPL (General Public License) 7, 355
GPL (General Public License), printing 26
grcat program . 236
Grigera, Juan . 310
group database, reading . 236
group file . 236
groups, information about . 236
gsub() function . 93, 155
gsub() function, arguments of 161
gsub() function, escape processing 162

392 GAWK: Effective AWK Programming

H
h debugger command (alias for help) 299
Hankerson, Darrel . 10, 310
Haque, John . 10, 310
Hartholz, Elaine . 9
Hartholz, Marshall . 9
Hasegawa, Isamu . 310
help debugger command . 299
hexadecimal numbers . 91
hexadecimal values, enabling interpretation of . . 28
histsort.awk program . 272
Hughes, Phil . 9
HUP signal . 212
hyphen (-), - operator 111, 112
hyphen (-), -- (decrement/increment) operators

. 111
hyphen (-), -- operator . 103
hyphen (-), -= operator 101, 112
hyphen (-), filenames beginning with 26
hyphen (-), in bracket expressions 42

I
i debugger command (alias for info) 297
id utility . 252
id.awk program . 252
if statement . 37, 120
if statement, actions, changing 115
igawk.sh program . 279
ignore debugger command 293
IGNORECASE variable 45, 130, 138, 153, 205
IGNORECASE variable, array sorting and 205
IGNORECASE variable, array subscripts and 138
IGNORECASE variable, in example programs 213
implementation issues, gawk 329
implementation issues, gawk, limits 72, 85
implementation issues, gawk, debugging 329
in operator . 105, 112, 123, 253
in operator, arrays and 139, 140
increment operators . 102
index() function . 156
indexing arrays . 138
indirect function calls . 183
info debugger command . 297
initialization, automatic . 20
input files . 49
input files, closing . 88
input files, counting elements in 261
input files, examples . 16
input files, reading . 49
input files, running awk without 12
input files, variable assignments and 31
input pipeline . 70
input redirection . 69
input, data, nondecimal . 199
input, explicit . 67
input, files, See input files . 64
input, multiline records . 64

input, splitting into records . 49
input, standard . 12, 86
input/output, binary . 129
input/output, from BEGIN and END 117
input/output, two-way . 206
insomnia, cure for . 264
installation, VMS . 322
installing gawk . 313
INT signal (MS-Windows) . 212
int() function . 152
integers . 346
integers, unsigned . 347
interacting with other programs 166
internal constant, INVALID_HANDLE 335
internal function, assoc_clear() 334
internal function, assoc_lookup() 334
internal function, dupnode() 334
internal function, force_number() 333
internal function, force_string() 333
internal function, force_wstring() 333
internal function, get_actual_argument() 335
internal function, get_argument() 335
internal function, get_curfunc_arg_count() . . 333
internal function, iop_alloc() 335
internal function, make_builtin() 334
internal function, make_number() 334
internal function, make_string() 334
internal function, register_deferred_variable()

. 335
internal function, register_open_hook() 335
internal function, unref() . 334
internal function, update_ERRNO() 335
internal function, update_ERRNO_saved() 335
internal macro, get_array_argument() 335
internal macro, get_scalar_argument() 335
internal structure, IOBUF . 335
internal type, AWKNUM . 333
internal type, NODE . 333
internal variable, nargs . 333
internal variable, stlen . 334
internal variable, stptr . 334
internal variable, type . 334
internal variable, vname . 334
internal variable, wstlen . 334
internal variable, wstptr . 334
internationalization . 175, 189
internationalization, localization 131, 189
internationalization, localization, character classes

. 44
internationalization, localization, gawk and 189
internationalization, localization, locale categories

. 190
internationalization, localization, marked strings

. 191
internationalization, localization, portability and

. 194
internationalizing a program 189
interpreted programs . 345, 356

Index 393

interval expressions . 41
INVALID_HANDLE internal constant 335
inventory-shipped file . 17
IOBUF internal structure . 335
iop_alloc() internal function 335
isarray() function (gawk) . 175
ISO . 356
ISO 8859-1 . 352
ISO Latin-1 . 352

J
Jacobs, Andrew . 234
Jaegermann, Michal . 10, 310
Java implementation of awk 327
Java programming language 356
jawk . 327
Jedi knights . 35
join() user-defined function 221

K
Kahrs, Jürgen . 10, 310
Kasal, Stepan . 10
Kenobi, Obi-Wan . 35
Kernighan, Brian . . 4, 7, 10, 98, 305, 309, 325, 347
kill command, dynamic profiling 211
Knights, jedi . 35
Kwok, Conrad . 310

L
l debugger command (alias for list) 300
labels.awk program . 269
languages, data-driven . 346
LC_ALL locale category . 191
LC_COLLATE locale category 190
LC_CTYPE locale category . 190
LC_MESSAGES locale category 190
LC_MESSAGES locale category, bindtextdomain()

function (gawk) . 192
LC_MONETARY locale category 190
LC_NUMERIC locale category 191
LC_RESPONSE locale category 191
LC_TIME locale category . 191
left angle bracket (<), < operator 105, 112
left angle bracket (<), < operator (I/O) 69
left angle bracket (<), <= operator 105, 112
left shift, bitwise . 173
leftmost longest match . 65
length() function . 156
Lesser General Public License (LGPL) 357
LGPL (Lesser General Public License) 357
libmawk . 327
libraries of awk functions . 213
libraries of awk functions, assertions 216
libraries of awk functions, associative arrays and

. 214

libraries of awk functions, character values as
numbers . 219

libraries of awk functions, command-line options
. 227

libraries of awk functions, example program for
using . 278

libraries of awk functions, group database, reading
. 236

libraries of awk functions, managing, data files
. 223

libraries of awk functions, managing, time 221
libraries of awk functions, merging arrays into

strings . 220
libraries of awk functions, rounding numbers . . 217
libraries of awk functions, user database, reading

. 232
line breaks . 21
line continuations . 108
line continuations, gawk . 109
line continuations, in print statement 76
line continuations, with C shell 20
lines, blank, printing . 75
lines, counting . 261
lines, duplicate, removing . 272
lines, matching ranges of . 115
lines, skipping between markers 115
lint checking . 130
lint checking, array elements 144
lint checking, array subscripts 146
lint checking, empty programs 25
lint checking, issuing warnings 28
lint checking, POSIXLY_CORRECT environment

variable . 30
lint checking, undefined functions 181
LINT variable . 130
Linux . 8, 196, 360
list debugger command . 300
local variables . 179
locale categories . 190
locale decimal point character 29
locale, definition of . 112
localization . 189
localization, See internationalization, localization

. 189
log files, timestamps in . 168
log() function . 152
logical false/true . 103
logical operators, See Boolean expressions 107
login information . 232
long options . 25
loops . 121
loops, continue statements and 123
loops, count for header . 211
loops, exiting . 124
loops, See Also while statement 121
Lost In Space . 332
ls utility . 20
lshift() function (gawk) . 173

394 GAWK: Effective AWK Programming

lvalues/rvalues . 100

M
mailing labels, printing . 269
mailing list, GNITS . 10
make_builtin() internal function 334
make_number() internal function 334
make_string() internal function 334
mark parity . 219
marked string extraction (internationalization)

. 193
marked strings, extracting . 193
Marx, Groucho . 103
match() function . 156
match() function, RSTART/RLENGTH variables . . 157
matching, expressions, See comparison expressions

. 104
matching, leftmost longest . 65
matching, null strings . 165
mawk program . 326
McPhee, Patrick . 310
memory, releasing . 334
message object files . 190
message object files, converting from portable

object files . 196
message object files, specifying directory of . . . 190,

191
metacharacters, escape sequences for 40
mktime() function (gawk) . 168
modifiers, in format specifiers 80
monetary information, localization 190
msgfmt utility . 196

N
n debugger command (alias for next) 294
names, arrays/variables 137, 213
names, functions . 176, 213
namespace issues . 137, 213
namespace issues, functions 176
nargs internal variable . 333
nawk utility . 4
negative zero . 349
NetBSD . 360
networks, programming . 207
networks, support for . 87
newlines . 21, 29, 108
newlines, as field separators . 57
newlines, as record separators 49
newlines, in dynamic regexps 47
newlines, in regexp constants 47
newlines, printing . 75
newlines, separating statements in actions 119,

120
next debugger command . 294
next statement . 109, 126
next statement, BEGIN/END patterns and 117

next statement, BEGINFILE/ENDFILE patterns and
. 118

next statement, user-defined functions and 127
nextfile statement . 127
nextfile statement, BEGIN/END patterns and . . 117
nextfile statement, BEGINFILE/ENDFILE patterns

and . 118
nextfile statement, user-defined functions and

. 127
nexti debugger command . 294
NF variable . 52, 133
NF variable, decrementing . 55
ni debugger command (alias for nexti) 294
noassign.awk program . 227
NODE internal type . 333
nodes, duplicating . 334
not Boolean-logic operator . 107
NR variable . 49, 133
NR variable, changing . 135
null strings . 51, 58, 103, 347
null strings, array elements and 144
null strings, as array subscripts 146
null strings, converting numbers to strings 95
null strings, matching . 165
null strings, quoting and . 15
number sign (#), #! (executable scripts) 13
number sign (#), #! (executable scripts),

portability issues with . 13
number sign (#), commenting 14
numbers . 334
numbers, as array subscripts 145
numbers, as values of characters 219
numbers, Cliff random . 218
numbers, converting . 95, 174
numbers, converting, to strings 129, 130
numbers, floating-point . 346
numbers, floating-point, AWKNUM internal type . . 333
numbers, hexadecimal . 91
numbers, NODE internal type 333
numbers, octal . 91
numbers, random . 152
numbers, rounding . 217
numeric, constants . 91
numeric, output format . 77
numeric, strings . 104
numeric, values . 333

O
o debugger command (alias for option) 298
oawk utility . 4
obsolete features . 35
octal numbers . 91
octal values, enabling interpretation of 28
OFMT variable . 77, 96, 130
OFMT variable, POSIX awk and 78
OFS variable . 55, 77, 130
OpenBSD . 360

Index 395

OpenSolaris . 326
operating systems, BSD-based 8
operating systems, PC, gawk on 321
operating systems, PC, gawk on, installing 318
operating systems, porting gawk to 331
operating systems, See Also GNU/Linux, PC

operating systems, Unix 313
operations, bitwise . 172
operators, arithmetic . 97
operators, assignment . 100
operators, assignment, evaluation order 101
operators, Boolean, See Boolean expressions . . 107
operators, decrement/increment 102
operators, GNU-specific . 44
operators, input/output 69, 70, 71, 84, 85, 112
operators, logical, See Boolean expressions 107
operators, precedence . 103, 111
operators, relational, See operators, comparison

. 104
operators, short-circuit . 108
operators, string . 98
operators, string-matching . 37
operators, string-matching, for buffers 44
operators, word-boundary (gawk) 44
option debugger command 298
options, command-line 12, 25, 59
options, command-line, end of 26
options, command-line, invoking awk 25
options, command-line, processing 227
options, deprecated . 35
options, long . 25
options, printing list of . 27
OR bitwise operation . 172
or Boolean-logic operator . 107
or() function (gawk) . 173
ord() user-defined function 219
order of evaluation, concatenation 99
ORS variable . 77, 131
output field separator, See OFS variable 55
output record separator, See ORS variable 77
output redirection . 83
output, buffering . 166, 167
output, duplicating into files 256
output, files, closing . 88
output, format specifier, OFMT 77
output, formatted . 78
output, pipes . 84
output, printing, See printing 75
output, records . 77
output, standard . 86

P
p debugger command (alias for print) 295
P1003.1 POSIX standard . 357
P1003.2 POSIX standard . 357
parameters, number of . 333
parentheses () . 41

parentheses (), pgawk program 211
password file . 232
patsplit() function . 158
patterns . 113
patterns, comparison expressions as 114
patterns, counts . 210
patterns, default . 18
patterns, empty . 118
patterns, expressions as . 113
patterns, ranges in . 115
patterns, regexp constants as 114
patterns, types of . 113
pawk (profiling version of Brian Kernighan’s awk)

. 326
PC operating systems, gawk on 321
PC operating systems, gawk on, installing 318
percent sign (%), % operator 111
percent sign (%), %= operator 101, 112
period (.) . 40
Perl . 342
Peters, Arno . 310
Peterson, Hal . 310
pgawk program . 209
pgawk program, awkprof.out file 209
pgawk program, dynamic profiling 211
pipes, closing . 88
pipes, input . 70
pipes, output . 84
Pitts, Dave . 10, 325
plus sign (+) . 41
plus sign (+), + operator 111, 112
plus sign (+), ++ (decrement/increment operators)

. 102
plus sign (+), ++ operator 103, 111
plus sign (+), += operator 101, 112
pointers to functions . 183
portability . 39
portability, #! (executable scripts) 13
portability, ** operator and . 98
portability, **= operator and 102
portability, ARGV variable . 14
portability, backslash continuation and 21
portability, backslash in escape sequences 39
portability, close() function and 89
portability, data files as single record 52
portability, deleting array elements 144
portability, example programs 213
portability, fflush() function and 166
portability, functions, defining 177
portability, gawk . 331
portability, gettext library and 189
portability, internationalization and 194
portability, length() function 156
portability, new awk vs. old awk 96
portability, next statement in user-defined

functions . 181
portability, NF variable, decrementing 56
portability, operators . 103

396 GAWK: Effective AWK Programming

portability, operators, not in POSIX awk 112
portability, POSIXLY_CORRECT environment variable

. 30
portability, substr() function 162
portable object files . 189, 193
portable object files, converting to message object

files . 196
portable object files, generating 27
portable object template files 189
porting gawk . 331
positional specifiers, printf statement 80, 193
positional specifiers, printf statement, mixing

with regular formats . 194
positive zero . 349
POSIX awk . 5, 102
POSIX awk, ** operator and 112
POSIX awk, **= operator and 102
POSIX awk, < operator and . 69
POSIX awk, | I/O operator and 70
POSIX awk, arithmetic operators and 98
POSIX awk, backslashes in string constants 39
POSIX awk, BEGIN/END patterns 117
POSIX awk, bracket expressions and 43
POSIX awk, bracket expressions and, character

classes . 43, 44
POSIX awk, break statement and 125
POSIX awk, changes in awk versions 304
POSIX awk, continue statement and 126
POSIX awk, CONVFMT variable and 129
POSIX awk, date utility and 172
POSIX awk, field separators and 52, 60
POSIX awk, FS variable and 130
POSIX awk, function keyword in 177
POSIX awk, functions and, gsub()/sub() 163
POSIX awk, functions and, length() 156
POSIX awk, GNU long options and 25
POSIX awk, interval expressions in 42
POSIX awk, next/nextfile statements and . . . 127
POSIX awk, numeric strings and 104
POSIX awk, OFMT variable and 78, 96
POSIX awk, period (.), using 40
POSIX awk, printf format strings and 82
POSIX awk, regular expressions and 42
POSIX awk, timestamps and 168
POSIX mode . 28, 30
POSIX, awk and . 3
POSIX, gawk extensions not included in 305
POSIX, programs, implementing in awk 243
POSIXLY_CORRECT environment variable 30
precedence . 103, 111
precedence, regexp operators 42
print debugger command . 295
print statement . 75
print statement, BEGIN/END patterns and 117
print statement, commas, omitting 76
print statement, I/O operators in 112
print statement, line continuations and 76
print statement, OFMT variable and 130

print statement, See Also redirection, of output
. 83

print statement, sprintf() function and 217
printf debugger command 296
printf statement . 75, 78
printf statement, columns, aligning 76
printf statement, format-control characters . . . 78
printf statement, I/O operators in 112
printf statement, modifiers 80
printf statement, positional specifiers 80, 193
printf statement, positional specifiers, mixing

with regular formats . 194
printf statement, See Also redirection, of output

. 83
printf statement, sprintf() function and 217
printf statement, syntax of 78
printing . 75
printing, list of options . 27
printing, mailing labels . 269
printing, unduplicated lines of text 257
printing, user information . 252
private variables . 213
processes, two-way communications with 205
processing data . 345
PROCINFO array . . . 35, 133, 134, 169, 207, 232, 235,

236, 252, 335
profiling awk programs . 209
profiling awk programs, dynamically 211
profiling gawk, See pgawk program 209
program, definition of . 11
programmers, attractiveness of 205
programming conventions, --non-decimal-data

option . 199
programming conventions, ARGC/ARGV variables

. 132
programming conventions, exit statement 128
programming conventions, function parameters

. 182
programming conventions, functions, calling . . . 151
programming conventions, functions, writing . . 176
programming conventions, gawk internals 339,

340
programming conventions, private variable names

. 214
programming language, recipe for 4
Programming languages, Ada 351
Programming languages, Java 356
programming languages, data-driven vs. procedural

. 11
programming, basic steps . 345
programming, concepts . 345
pwcat program . 232

Q
q debugger command (alias for quit) 300
QSE Awk . 327
question mark (?) regexp operator 41, 44

Index 397

question mark (?), ?: operator 112
QuikTrim Awk . 327
quit debugger command . 300
QUIT signal (MS-Windows) 212
quoting . 12, 13, 14
quoting, rules for . 15
quoting, tricks for . 15

R
r debugger command (alias for run) 294
Rakitzis, Byron . 272
rand() function . 152
random numbers, Cliff . 218
random numbers, rand()/srand() functions . . 152
random numbers, seed of . 152
range expressions (regexps) . 42
range patterns . 115
Rankin, Pat . 10, 101, 310, 325
readable data files, checking 225
readable.awk program . 225
recipe for a programming language 4
record separators . 49, 131
record separators, changing . 50
record separators, regular expressions as 51
record separators, with multiline records 64
records . 49, 346
records, multiline . 64
records, printing . 75
records, splitting input into . 49
records, terminating . 51
records, treating files as . 52
recursive functions . 176
redirection of input . 69
redirection of output . 83
reference counting, sorting arrays 205
regexp constants . 38, 92, 107
regexp constants, /=.../, /= operator and 102
regexp constants, as patterns 114
regexp constants, in gawk . 93
regexp constants, slashes vs. quotes 47
regexp constants, vs. string constants 47
regexp, See regular expressions 37
register_deferred_variable() internal function

. 335
register_open_hook() internal function 335
regular expressions . 37
regular expressions as field separators 57
regular expressions, anchors in 40
regular expressions, as field separators 57
regular expressions, as patterns 37, 113
regular expressions, as record separators 51
regular expressions, case sensitivity 45, 130
regular expressions, computed 47
regular expressions, constants, See regexp

constants . 38
regular expressions, dynamic 47

regular expressions, dynamic, with embedded
newlines . 47

regular expressions, gawk, command-line options
. 45

regular expressions, interval expressions and 29
regular expressions, leftmost longest match 46
regular expressions, operators 37, 40
regular expressions, operators, for buffers 44
regular expressions, operators, for words 44
regular expressions, operators, gawk 44
regular expressions, operators, precedence of . . . 42
regular expressions, searching for 248
relational operators, See comparison operators

. 104
return debugger command 294
return statement, user-defined functions 182
return values, close() function 89
rev() user-defined function 178
rewind() user-defined function 225
right angle bracket (>), > operator 105, 112
right angle bracket (>), > operator (I/O) 84
right angle bracket (>), >= operator 105, 112
right angle bracket (>), >> operator (I/O) . . 84, 112
right shift, bitwise . 173
Ritchie, Dennis . 347
RLENGTH variable . 134
RLENGTH variable, match() function and 157
Robbins, Arnold . . . 60, 70, 234, 264, 311, 324, 342
Robbins, Bill . 70
Robbins, Harry . 10
Robbins, Jean . 10
Robbins, Miriam . 10, 70, 234
Robinson, Will . 332
robot, the . 332
Rommel, Kai Uwe . 310
round() user-defined function 218
rounding numbers . 217
RS variable . 49, 131
RS variable, multiline records and 65
rshift() function (gawk) . 173
RSTART variable . 134
RSTART variable, match() function and 157
RT variable . 51, 67, 69, 134
Rubin, Paul . 4, 309
rule, definition of . 11
run debugger command . 294
rvalues/lvalues . 100

S
s debugger command (alias for step) 295
sandbox mode . 29
scalar values . 346
Schorr, Andrew . 10
Schreiber, Bert . 9
Schreiber, Rita . 9
search paths . 32, 284, 321, 324
search paths, for source files 32, 284, 321, 324

398 GAWK: Effective AWK Programming

searching . 156
searching, files for regular expressions 248
searching, for words . 263
sed utility . 60, 276, 351
semicolon (;) . 22
semicolon (;), AWKPATH variable and 321
semicolon (;), separating statements in actions

. 119, 120
separators, field . 129, 130
separators, field, FIELDWIDTHS variable and 129
separators, field, FPAT variable and 129
separators, field, POSIX and 52
separators, for records 49, 50, 131
separators, for records, regular expressions as . . 51
separators, for statements in actions 119
separators, subscript . 131
set debugger command . 296
shells, piping commands into 85
shells, quoting . 118
shells, quoting, rules for . 15
shells, scripts . 11
shells, variables . 118
shift, bitwise . 173
short-circuit operators . 108
si debugger command (alias for stepi) 295
side effects . 99, 102, 103
side effects, array indexing . 139
side effects, asort() function 204
side effects, assignment expressions 100
side effects, Boolean operators 108
side effects, conditional expressions 109
side effects, decrement/increment operators . . . 102
side effects, FILENAME variable 72
side effects, function calls . 110
side effects, statements . 120
SIGHUP signal . 212
SIGINT signal (MS-Windows) 212
signals, HUP/SIGHUP . 212
signals, INT/SIGINT (MS-Windows) 212
signals, QUIT/SIGQUIT (MS-Windows) 212
signals, USR1/SIGUSR1 . 211
SIGQUIT signal (MS-Windows) 212
SIGUSR1 signal . 211
silent debugger command 294
sin() function . 153
single precision floating-point 347
single quote (’) . 11, 13, 15
single quote (’), vs. apostrophe 14
single quote (’), with double quotes 15
single-character fields . 58
Skywalker, Luke . 35
sleep utility . 266
Solaris, POSIX-compliant awk 326
sort function, arrays, sorting 204
sort utility . 271
sort utility, coprocesses and 206
sorting characters in different languages 190
source code, awka . 326

source code, Brian Kernighan’s awk 325
source code, Busybox Awk 326
source code, gawk . 313
source code, jawk . 327
source code, libmawk . 327
source code, mawk . 326
source code, mixing . 27
source code, pawk . 326
source code, QSE Awk . 327
source code, QuikTrim Awk 327
source code, Solaris awk. 326
source code, xgawk . 327
source files, search path for 284
sparse arrays . 138
Spencer, Henry . 351
split utility . 254
split() function . 158
split() function, array elements, deleting 144
split.awk program . 254
sprintf() function . 77, 159
sprintf() function, OFMT variable and 130
sprintf() function, print/printf statements and

. 217
sqrt() function . 153
square brackets ([]) . 40
srand() function . 153
Stallman, Richard 7, 9, 309, 355
standard error . 86
standard input . 12, 86
standard output . 86
stat() function, implementing in gawk 336
statements, compound, control statements and

. 120
statements, control, in actions 120
statements, multiple . 22
step debugger command . 295
stepi debugger command . 295
stlen internal variable . 334
stptr internal variable . 334
stream editors . 60, 276
strftime() function (gawk) 169
string constants . 91
string constants, vs. regexp constants 47
string extraction (internationalization) 193
string operators . 98
string-matching operators . 37
strings . 334
strings, converting . 95, 174
strings, converting, numbers to 129, 130
strings, empty, See null strings 51
strings, extracting . 193
strings, for localization . 191
strings, length of . 91
strings, merging arrays into 220
strings, NODE internal type . 333
strings, null . 58
strings, numeric . 104
strings, splitting . 159

Index 399

strtonum() function (gawk) 159
strtonum() function (gawk), --non-decimal-data

option and . 199
sub() function . 93, 160
sub() function, arguments of 161
sub() function, escape processing 162
subscript separators . 131
subscripts in arrays, multidimensional 146
subscripts in arrays, multidimensional, scanning

. 147
subscripts in arrays, numbers as 145
subscripts in arrays, uninitialized variables as

. 145
SUBSEP variable . 131
SUBSEP variable, multidimensional arrays 146
substr() function . 161
Sumner, Andrew . 326
switch statement . 123
syntactic ambiguity: /= operator vs. /=.../ regexp

constant . 102
system() function . 166
systime() function (gawk) . 169

T
t debugger command (alias for tbreak) 293
tbreak debugger command 293
Tcl . 214
TCP/IP . 207
TCP/IP, support for . 87
tee utility . 256
tee.awk program . 256
terminating records . 51
testbits.awk program . 173
Texinfo 7, 213, 263, 273, 315, 331
Texinfo, chapter beginnings in files 40
Texinfo, extracting programs from source files

. 273
text, printing . 75
text, printing, unduplicated lines of 257
TEXTDOMAIN variable . 131, 191
TEXTDOMAIN variable, BEGIN pattern and 192
TEXTDOMAIN variable, portability and 194
textdomain() function (C library) 189
tilde (~), ~ operator . . 37, 45, 47, 92, 105, 107, 112,

114
time, alarm clock example program 264
time, localization and . 191
time, managing . 221
time, retrieving . 168
timestamps . 168, 169
timestamps, converting dates to 169
timestamps, formatted . 221
tolower() function . 162
toupper() function . 162
tr utility . 267
trace debugger command . 300
translate.awk program . 267

troubleshooting, --non-decimal-data option . . . 28
troubleshooting, == operator 106
troubleshooting, awk uses FS not IFS 56
troubleshooting, backslash before nonspecial

character . 39
troubleshooting, division . 98
troubleshooting, fatal errors, field widths,

specifying . 61
troubleshooting, fatal errors, printf format strings

. 82
troubleshooting, fflush() function 166
troubleshooting, function call syntax 110
troubleshooting, gawk . 329
troubleshooting, gawk, bug reports 324
troubleshooting, gawk, fatal errors, function

arguments . 151
troubleshooting, getline function 225
troubleshooting, gsub()/sub() functions 161
troubleshooting, match() function 158
troubleshooting, patsplit() function 158
troubleshooting, print statement, omitting

commas . 76
troubleshooting, printing . 85
troubleshooting, quotes with file names 87
troubleshooting, readable data files 225
troubleshooting, regexp constants vs. string

constants . 47
troubleshooting, string concatenation 99
troubleshooting, substr() function 161
troubleshooting, system() function 167
troubleshooting, typographical errors, global

variables . 27
true, logical . 103
Trueman, David . 4, 9, 309
trunc-mod operation . 98
truth values . 103
type conversion . 95
type internal variable . 334

U
u debugger command (alias for until) 295
undefined functions . 181
underscore (_), _ C macro . 190
underscore (_), in names of private variables . . 214
underscore (_), translatable string 192
undisplay debugger command 296
undocumented features . 35
Unicode . 352
uninitialized variables, as array subscripts 145
uniq utility . 257
uniq.awk program . 258
Unix . 360
Unix awk, backslashes in escape sequences 39
Unix awk, close() function and 89
Unix awk, password files, field separators and . . . 60
Unix, awk scripts and . 13
UNIXROOT variable, on OS/2 systems 321

400 GAWK: Effective AWK Programming

unref() internal function . 334
unsigned integers . 347
until debugger command . 295
unwatch debugger command 296
up debugger command . 297
update_ERRNO() internal function 335
update_ERRNO_saved() internal function 335
user database, reading . 232
user-defined, functions . 175
user-defined, functions, counts 211
user-defined, variables . 94
user-modifiable variables . 129
users, information about, printing 252
users, information about, retrieving 232
USR1 signal . 211

V
values, numeric . 346
values, string . 346
variable typing . 104
variables . 22, 346
variables, assigning on command line 94
variables, built-in . 94, 128
variables, built-in, -v option, setting with 26
variables, built-in, conveying information 131
variables, flag . 108
variables, getline command into, using . . . 68, 69,

71
variables, global, for library functions 213
variables, global, printing list of 27
variables, initializing . 94
variables, local . 179
variables, names of . 137
variables, private . 213
variables, setting . 26
variables, shadowing . 176
variables, types of . 100
variables, types of, comparison expressions and

. 104
variables, uninitialized, as array subscripts 145
variables, user-defined . 94
vertical bar (|) . 41
vertical bar (|), | operator (I/O) 70, 112
vertical bar (|), |& operator (I/O) 71, 112, 206
vertical bar (|), || operator 108, 112
Vinschen, Corinna . 10
vname internal variable . 334

W
w debugger command (alias for watch) 296
w utility . 61
walk_array() user-defined function 241
Wall, Larry . 137, 342
Wallin, Anders . 10
warnings, issuing . 28
watch debugger command . 296
wc utility . 261
wc.awk program . 261
Weinberger, Peter . 4, 309
while statement . 37, 121
whitespace, as field separators 57
whitespace, functions, calling 151
whitespace, newlines as . 29
Williams, Kent . 310
Woehlke, Matthew . 310
Woods, John . 309
word boundaries, matching . 44
word, regexp definition of . 44
word-boundary operator (gawk) 44
wordfreq.awk program . 271
words, counting . 261
words, duplicate, searching for 263
words, usage counts, generating 271
wstlen internal variable . 334
wstptr internal variable . 334

X
xgawk . 327
xgettext utility . 193
XML (eXtensible Markup Language) 335
XOR bitwise operation . 172
xor() function (gawk) . 173

Y
Yawitz, Efraim . 310

Z
Zaretskii, Eli . 10, 310, 325
zero, negative vs. positive . 349
zerofile.awk program . 226
Zoulas, Christos . 310

	Foreword
	Preface
	History of awk and gawk
	A Rose by Any Other Name
	Using This Book
	Typographical Conventions
	The GNU Project and This Book
	How to Contribute
	Acknowledgments

	Getting Started with awk
	How to Run awk Programs
	One-Shot Throwaway awk Programs
	Running awk Without Input Files
	Running Long Programs
	Executable awk Programs
	Comments in awk Programs
	Shell-Quoting Issues
	Quoting in MS-Windows Batch Files

	Data Files for the Examples
	Some Simple Examples
	An Example with Two Rules
	A More Complex Example
	awk Statements Versus Lines
	Other Features of awk
	When to Use awk

	Running awk and gawk
	Invoking awk
	Command-Line Options
	Other Command-Line Arguments
	Naming Standard Input
	The Environment Variables gawk Uses
	The AWKPATH Environment Variable
	Other Environment Variables

	gawk's Exit Status
	Including Other Files Into Your Program
	Obsolete Options and/or Features
	Undocumented Options and Features

	Regular Expressions
	How to Use Regular Expressions
	Escape Sequences
	Regular Expression Operators
	Using Bracket Expressions
	gawk-Specific Regexp Operators
	Case Sensitivity in Matching
	How Much Text Matches?
	Using Dynamic Regexps

	Reading Input Files
	How Input Is Split into Records
	Examining Fields
	Nonconstant Field Numbers
	Changing the Contents of a Field
	Specifying How Fields Are Separated
	Whitespace Normally Separates Fields
	Using Regular Expressions to Separate Fields
	Making Each Character a Separate Field
	Setting FS from the Command Line
	Field-Splitting Summary

	Reading Fixed-Width Data
	Defining Fields By Content
	Multiple-Line Records
	Explicit Input with getline
	Using getline with No Arguments
	Using getline into a Variable
	Using getline from a File
	Using getline into a Variable from a File
	Using getline from a Pipe
	Using getline into a Variable from a Pipe
	Using getline from a Coprocess
	Using getline into a Variable from a Coprocess
	Points to Remember About getline
	Summary of getline Variants

	Directories On The Command Line

	Printing Output
	The print Statement
	print Statement Examples
	Output Separators
	Controlling Numeric Output with print
	Using printf Statements for Fancier Printing
	Introduction to the printf Statement
	Format-Control Letters
	Modifiers for printf Formats
	Examples Using printf

	Redirecting Output of print and printf
	Special File Names in gawk
	Special Files for Standard Descriptors
	Special Files for Network Communications
	Special File Name Caveats

	Closing Input and Output Redirections

	Expressions
	Constants, Variables and Conversions
	Constant Expressions
	Numeric and String Constants
	Octal and Hexadecimal Numbers
	Regular Expression Constants

	Using Regular Expression Constants
	Variables
	Using Variables in a Program
	Assigning Variables on the Command Line

	Conversion of Strings and Numbers

	Operators: Doing Something With Values
	Arithmetic Operators
	String Concatenation
	Assignment Expressions
	Increment and Decrement Operators

	Truth Values and Conditions
	True and False in awk
	Variable Typing and Comparison Expressions
	String Type Versus Numeric Type
	Comparison Operators
	String Comparison With POSIX Rules

	Boolean Expressions
	Conditional Expressions

	Function Calls
	Operator Precedence (How Operators Nest)
	Where You Are Makes A Difference

	Patterns, Actions, and Variables
	Pattern Elements
	Regular Expressions as Patterns
	Expressions as Patterns
	Specifying Record Ranges with Patterns
	The BEGIN and END Special Patterns
	Startup and Cleanup Actions
	Input/Output from BEGIN and END Rules

	The BEGINFILE and ENDFILE Special Patterns
	The Empty Pattern

	Using Shell Variables in Programs
	Actions
	Control Statements in Actions
	The if-else Statement
	The while Statement
	The do-while Statement
	The for Statement
	The switch Statement
	The break Statement
	The continue Statement
	The next Statement
	The nextfile Statement
	The exit Statement

	Built-in Variables
	Built-in Variables That Control awk
	Built-in Variables That Convey Information
	Using ARGC and ARGV

	Arrays in awk
	The Basics of Arrays
	Introduction to Arrays
	Referring to an Array Element
	Assigning Array Elements
	Basic Array Example
	Scanning All Elements of an Array
	Using Predefined Array Scanning Orders

	The delete Statement
	Using Numbers to Subscript Arrays
	Using Uninitialized Variables as Subscripts
	Multidimensional Arrays
	Scanning Multidimensional Arrays

	Arrays of Arrays

	Functions
	Built-in Functions
	Calling Built-in Functions
	Numeric Functions
	String-Manipulation Functions
	More About \ and & with sub(), gsub(), and gensub()

	Input/Output Functions
	Time Functions
	Bit-Manipulation Functions
	Getting Type Information
	String-Translation Functions

	User-Defined Functions
	Function Definition Syntax
	Function Definition Examples
	Calling User-Defined Functions
	Writing A Function Call
	Controlling Variable Scope
	Passing Function Arguments By Value Or By Reference

	The return Statement
	Functions and Their Effects on Variable Typing

	Indirect Function Calls

	Internationalization with gawk
	Internationalization and Localization
	GNU gettext
	Internationalizing awk Programs
	Translating awk Programs
	Extracting Marked Strings
	Rearranging printf Arguments
	awk Portability Issues

	A Simple Internationalization Example
	gawk Can Speak Your Language

	Advanced Features of gawk
	Allowing Nondecimal Input Data
	Controlling Array Traversal and Array Sorting
	Controlling Array Traversal
	Sorting Array Values and Indices with gawk

	Two-Way Communications with Another Process
	Using gawk for Network Programming
	Profiling Your awk Programs

	A Library of awk Functions
	Naming Library Function Global Variables
	General Programming
	Converting Strings To Numbers
	Assertions
	Rounding Numbers
	The Cliff Random Number Generator
	Translating Between Characters and Numbers
	Merging an Array into a String
	Managing the Time of Day

	Data File Management
	Noting Data File Boundaries
	Rereading the Current File
	Checking for Readable Data Files
	Checking For Zero-length Files
	Treating Assignments as File Names

	Processing Command-Line Options
	Reading the User Database
	Reading the Group Database
	Traversing Arrays of Arrays

	Practical awk Programs
	Running the Example Programs
	Reinventing Wheels for Fun and Profit
	Cutting out Fields and Columns
	Searching for Regular Expressions in Files
	Printing out User Information
	Splitting a Large File into Pieces
	Duplicating Output into Multiple Files
	Printing Nonduplicated Lines of Text
	Counting Things

	A Grab Bag of awk Programs
	Finding Duplicated Words in a Document
	An Alarm Clock Program
	Transliterating Characters
	Printing Mailing Labels
	Generating Word-Usage Counts
	Removing Duplicates from Unsorted Text
	Extracting Programs from Texinfo Source Files
	A Simple Stream Editor
	An Easy Way to Use Library Functions
	Finding Anagrams From A Dictionary
	And Now For Something Completely Different

	dgawk: The awk Debugger
	Introduction to dgawk
	Debugging In General
	Additional Debugging Concepts
	Awk Debugging

	Sample dgawk session
	dgawk Invocation
	Finding The Bug

	Main dgawk Commands
	Control Of Breakpoints
	Control of Execution
	Viewing and Changing Data
	Dealing With The Stack
	Obtaining Information About The Program and The Debugger State
	Miscellaneous Commands

	Readline Support
	Limitations and Future Plans

	The Evolution of the awk Language
	Major Changes Between V7 and SVR3.1
	Changes Between SVR3.1 and SVR4
	Changes Between SVR4 and POSIX awk
	Extensions in Brian Kernighan's awk
	Extensions in gawk Not in POSIX awk
	Common Extensions Summary
	Regexp Ranges and Locales: A Long Sad Story
	Major Contributors to gawk

	Installing gawk
	The gawk Distribution
	Getting the gawk Distribution
	Extracting the Distribution
	Contents of the gawk Distribution

	Compiling and Installing gawk on Unix-like Systems
	Compiling gawk for Unix-like Systems
	Additional Configuration Options
	The Configuration Process

	Installation on Other Operating Systems
	Installation on PC Operating Systems
	Installing a Prepared Distribution for PC Systems
	Compiling gawk for PC Operating Systems
	Testing gawk on PC Operating Systems
	Using gawk on PC Operating Systems
	Using gawk In The Cygwin Environment
	Using gawk In The MSYS Environment

	How to Compile and Install gawk on VMS
	Compiling gawk on VMS
	Installing gawk on VMS
	Running gawk on VMS
	Some VMS Systems Have An Old Version of gawk

	Reporting Problems and Bugs
	Other Freely Available awk Implementations

	Implementation Notes
	Downward Compatibility and Debugging
	Making Additions to gawk
	Accessing The gawk Git Repository
	Adding New Features
	Porting gawk to a New Operating System

	Adding New Built-in Functions to gawk
	A Minimal Introduction to gawk Internals
	Extension Licensing
	Example: Directory and File Operation Built-ins
	Using chdir() and stat()
	C Code for chdir() and stat()
	Integrating the Extensions

	Probable Future Extensions

	Basic Programming Concepts
	What a Program Does
	Data Values in a Computer
	Floating-Point Number Caveats
	The String Value Can Lie
	Floating Point Numbers Are Not Abstract Numbers
	Standards Versus Existing Practice

	Glossary
	GNU General Public License
	GNU Free Documentation License
	ADDENDUM: How to use this License for your documents

	Index

